A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a va...A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.展开更多
The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of buildin...The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.展开更多
Well completions are generally used to connect a reservoir to the surface so that fluids can be produced from orinjected into it. With these systems, pipe flows are typically established in the horizontal sections of ...Well completions are generally used to connect a reservoir to the surface so that fluids can be produced from orinjected into it. With these systems, pipe flows are typically established in the horizontal sections of slotted screencompletions and inflow control device (ICD) completions;moreover, an annular flow exists in the region betweenthe pipe and the borehole wall. On the basis of the principles of mass and momentum conservation, in the presentstudy, a coupling model considering the variable mass flow of the central tubing, the variable mass flow of theannular tubing and the reservoir seepage is implemented to simulate the wellbore–annulus–reservoir behaviorin the horizontal section of slotted-screen and ICD completions. In earlier models, only the central tubing variablemass flow and reservoir seepage flow were considered. The present results show that the closer the heel end, thegreater is the flow per unit length in the central tubing from the annulus. When external casing packers are notconsidered, the predicted production rate of the slotted screen completion, which is obtained using the variablemass flow model not taking into account the annulus flow, is 9.51% higher than the rate obtained using the (complete) model with annulus flow. In addition, the incomplete model forecasts the production of ICD completion ata 70.98% higher rate. Both models show that the pressure profile and flow profile of the borehole wall are relatively uniform in the wellbore–annulus–reservoir in horizontal wells.展开更多
Tree-ring chronologies from pine,oak and black locust tree species were used to reconstruct annual streamflow and examine hydrological drought years for Palgong Mountain forested watershed in southeastern South Korea ...Tree-ring chronologies from pine,oak and black locust tree species were used to reconstruct annual streamflow and examine hydrological drought years for Palgong Mountain forested watershed in southeastern South Korea for the period from 1954-2015. The backward elimination multiple regression analysis provided the statistically significant predictor chronologies of streamflow. The final calibration and verification test models accounted for 84.8% and 81.6%,respectively,of the variability in streamflow observed in the gage data. Further verification of the validity of the reconstructed model was undertaken with the Pearson Correlation Coefficient,the Reduction of Error Test,and the Durbin-Watson Statistics and indicated fidelity of the model for reconstructing the annual streamflow. Analyses of the reconstructed annual streamflow indicate that the most persistent years of high flows above the median annual discharge occurred from 1986-2008.This period included 7 single or multiple years of highest flow above the 90 th percentile discharge and multiple years of high flows with a time interval of 2-6 years,although with intervening multiple years of low flows below the 10 th and 50 th percentile. In comparison,the most persistent years of low flows below the median annual discharge occurred from 1954-1985 and 2009-2015. This period included 8 single or multiple years of lowest flow below the 10 th percentiledischarge and multiple years of low flows with a time interval of 2-9 years,although also with intervening multiple years of high flows above the 50 th percentile. No single years of extreme hydrological droughts below the 10 th percentile were identified from 1986-2015 whereas a greater proportion of high flows above the 90 th percentile occurred during this period. The persistent single or multiple years of lowest flows between 1954 and 1985 were the recent most critical hydrological drought years identified in the Palgong Mountain forested watershed providing supportive evidence of the severity of past hydrological droughts during that period,applicable to the southeastern South Korea where the study watershed is located. This interpretation agrees with the hydrological drought event years identified from 1951 to the early 1980 s in a related national study that used precipitation proxy data to reconstruct past occurrences of droughts in Korea.展开更多
An iterative method was developed for incorporating the well bore boundary into the finite difference model of water flow in variably saturated porous media. Six cases were presented involving groundwater pumping or i...An iterative method was developed for incorporating the well bore boundary into the finite difference model of water flow in variably saturated porous media. Six cases were presented involving groundwater pumping or injection to demonstrate the advantages of the iterative method over the traditional method. For the iterative method, the total flux gradually approached the well discharge and the flux profile was non-uniform. And the iterative method took into account the variation of well bore water table. Compared to the traditional method, the iterative method can simulate the variably saturated flow caused by pumping or injection more realistically.展开更多
Tubing collars’influence on hydrodynamic behavior of annular duct flow has been investigated using Particle Image Velocity(PIV)technology.PIV has become an efficient method for complex transient flows visualization.A...Tubing collars’influence on hydrodynamic behavior of annular duct flow has been investigated using Particle Image Velocity(PIV)technology.PIV has become an efficient method for complex transient flows visualization.A water flow loop with two replaceable variable cross-sections(VCS),75-90 mm and 90-110 mm,in a 129 mm inner diameter(ID)pipe was used.The whole field of the variable cross-section annulus(VCSA)was visualized,including forward-facing step(FFS),narrow annulus(NA),and backwardfacing step(BFS)flow.The VCSA ratio and Reynolds(Re)number influence on streamline distribution,velocity distribution,and turbulence intensity were discussed.Results showed that the recirculation is easier to form in BFS than FFS flow under the same condition.The VCSA ratio affects the formation of recirculation zones and the location of the reattachment point.Reynolds number mainly affects BFS flow by influencing the main velocity component-axial velocity.The turbulence intensity is relatively high in BFS than FFS flow and is larger at y/h>1.0 than y/h<1.0.Furthermore,the streamwise cohere nt structures reveal that the first two modes are predominant and represent the main characteristics of the flow by proper orthogonal decomposition(POD)method.展开更多
Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a mor...Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a more energy-efficient operation.Determining the differential pressure adjustment value based on the terminal user's real-time demand is one of the critical issues to be addressed during the optimal control process.Furthermore,the online application of the differential pressure setpoint optimization method needs to be considered,along with the stability of the system.This paper proposes a variable differential pressure reset method with an adaptive adjustment algorithm based on the Mamdani fuzzy model.The proposed method was compared with differential pressure reset methods with reference to the chilled water differential temperature,outdoor temperature,and linear model based on the adjustment algorithm.The energy-saving potential,temperature control effect,and avoidance of the most unfavorable thermodynamic loop effects of the four methods were investigated experimentally.The results indicated that,while satisfying the terminal user's energy supply demand and ensuring the avoidance of the most unfavorable thermodynamic loop,the proposed adaptive adjustment algorithm also decreased the differential pressure setpoint value by 25.1%—59.1%and achieved energy savings of 10.6%-45.0%.By monitoring the valve position and supply air temperature of each terminal user,the proposed method exhibited suitable online adaptability and could be flexibly applied to buildings with random load changes.展开更多
In this work,we develop a novel high-order discontinuous Galerkin(DG)method for solving the incompressible Navier-Stokes equations with variable density.The incompressibility constraint at cell interfaces is relaxed b...In this work,we develop a novel high-order discontinuous Galerkin(DG)method for solving the incompressible Navier-Stokes equations with variable density.The incompressibility constraint at cell interfaces is relaxed by an artificial compressibility term.Then,since the hyperbolic nature of the governing equations is recovered,the simple and robust Harten-Lax-van Leer(HLL)flux is applied to discrete the inviscid term of the variable density incompressible Navier-Stokes equations.The viscous term is discretized by the direct DG(DDG)method,the construction of which was initially inspired by the weak solution of a scalar diffusion equation.In addition,in order to eliminate the spurious oscillations around sharp density gradients,a local slope limiting operator is also applied during the highly stratified flow simulations.The convergence property and performance of the present high-order DDG method are well demonstrated by several benchmark and challenging numerical test cases.Due to its advantages of simplicity and robustness in implementation,the present method offers an effective approach for simulating the variable density incompressible flows.展开更多
Thermal battery plays an important role in renewable energy utilization towards carbon neutrality.The novel absorption thermal battery(ATB)has excellent performance but suffers from serious capacity attenuation.To add...Thermal battery plays an important role in renewable energy utilization towards carbon neutrality.The novel absorption thermal battery(ATB)has excellent performance but suffers from serious capacity attenuation.To address this problem,two capacity regulation methods,i.e.,variable solution flow and variable cooling water flow,are proposed to achieve a demanded discharging rate.The effects of the two regulation strategies on the dynamic discharging characteristics and overall storage performance are comparatively investigated.To demon-strate the adjustability of the output capacity,several stable discharging rates are successfully maintained by the proposed methods.To maintain a higher discharging rate,the stable discharging time has to be sacrificed.As the demanded output increased from 0.5 kW to 6.0 kW,the stable discharging time decreased from 781.8 min to 27.9 min under variable solution flow and from 769.9 min to 30.7 min under variable cooling water flow.With the increase of solution or water flow rate,the energy storage density is improved,while the energy storage efficiency is slightly increased first and decreased later.The regulation method of variable water flow shows relatively lower energy storage efficiency due to the larger pump power.This study could facilitate reasonable development and application of ATB cycles.展开更多
A new pressurized feed system of the dual-thrust hybrid rocket motor for flight is presented in this paper.The feed system supplies 90% hydrogen peroxide (90%H 2 O 2) with two different flows of 4.5 and 2 kg s 1.The o...A new pressurized feed system of the dual-thrust hybrid rocket motor for flight is presented in this paper.The feed system supplies 90% hydrogen peroxide (90%H 2 O 2) with two different flows of 4.5 and 2 kg s 1.The oxidizer flow is changed through regulating the mass flow of the high-pressure gas and switching the performance modes of the unique oxidizer flow control valve simultaneously.The models of the gas storage container,pressure regulator valve,control orifice,propellant tank,oxidizer flow control valve and cavitating venturi are generated and used to compute the instantaneous pressure,temperature and mass flow rate.There is a good agreement between the simulated and experimental results.Parameter sensitivity analysis is also conducted.It is found that the throat diameter of the cavitating venturi in feed line 1 is the main factor affecting the mass flow in both boost and sustaining phase.Other parameters have limited effects on the mass flow rate and the transition time of the system.展开更多
Chiller model is a key factor to building energy simulation and chiller performance prediction.With spread of new types of electric water chillers that have higher performance and wider operating range,new challenges ...Chiller model is a key factor to building energy simulation and chiller performance prediction.With spread of new types of electric water chillers that have higher performance and wider operating range,new challenges have been faced by building energy simulation tools and their chiller models.This work takes a new type of electric water chiller as a case study and reevaluates eight typical empirically based models for predicting the energy performance of electric water chiller to verify whether they are suitable for the new type of chiller,using both laboratory test data from chiller manufacturer and online monitoring data from on-site operation of a central cooling plant with chillers of the same type.The prediction ability of the chiller models(including model prediction accuracy and generation ability)in laboratory test and on-site operation situations are examined.The results show that the existing models can well describe the chiller performance in the laboratory test situation but perform poorly in the on-site operation situation.As the best two models in the laboratory dataset,the overall prediction errors of DOE-2 and GN model increase more than 250%and 75%respectively in the field dataset.The big discrepancy of model prediction accuracy in the two situations is mainly due to the differences of evaporator and condenser water flow rates between the laboratory and on-site operation datasets,which indicates the limitations of the empirical chiller models and implies further research in future in order to improve the suitability and reliability of chiller model.展开更多
文摘A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.
基金Project(2006BAJ01B05) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plane Period
文摘The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.
基金the Scientific Research and Technological Development Project of CNPC(2019D-4413).
文摘Well completions are generally used to connect a reservoir to the surface so that fluids can be produced from orinjected into it. With these systems, pipe flows are typically established in the horizontal sections of slotted screencompletions and inflow control device (ICD) completions;moreover, an annular flow exists in the region betweenthe pipe and the borehole wall. On the basis of the principles of mass and momentum conservation, in the presentstudy, a coupling model considering the variable mass flow of the central tubing, the variable mass flow of theannular tubing and the reservoir seepage is implemented to simulate the wellbore–annulus–reservoir behaviorin the horizontal section of slotted-screen and ICD completions. In earlier models, only the central tubing variablemass flow and reservoir seepage flow were considered. The present results show that the closer the heel end, thegreater is the flow per unit length in the central tubing from the annulus. When external casing packers are notconsidered, the predicted production rate of the slotted screen completion, which is obtained using the variablemass flow model not taking into account the annulus flow, is 9.51% higher than the rate obtained using the (complete) model with annulus flow. In addition, the incomplete model forecasts the production of ICD completion ata 70.98% higher rate. Both models show that the pressure profile and flow profile of the borehole wall are relatively uniform in the wellbore–annulus–reservoir in horizontal wells.
基金support of Forest Science and Technology Projects (Project No.S211215L020210) provided by Korea Forest Service
文摘Tree-ring chronologies from pine,oak and black locust tree species were used to reconstruct annual streamflow and examine hydrological drought years for Palgong Mountain forested watershed in southeastern South Korea for the period from 1954-2015. The backward elimination multiple regression analysis provided the statistically significant predictor chronologies of streamflow. The final calibration and verification test models accounted for 84.8% and 81.6%,respectively,of the variability in streamflow observed in the gage data. Further verification of the validity of the reconstructed model was undertaken with the Pearson Correlation Coefficient,the Reduction of Error Test,and the Durbin-Watson Statistics and indicated fidelity of the model for reconstructing the annual streamflow. Analyses of the reconstructed annual streamflow indicate that the most persistent years of high flows above the median annual discharge occurred from 1986-2008.This period included 7 single or multiple years of highest flow above the 90 th percentile discharge and multiple years of high flows with a time interval of 2-6 years,although with intervening multiple years of low flows below the 10 th and 50 th percentile. In comparison,the most persistent years of low flows below the median annual discharge occurred from 1954-1985 and 2009-2015. This period included 8 single or multiple years of lowest flow below the 10 th percentiledischarge and multiple years of low flows with a time interval of 2-9 years,although also with intervening multiple years of high flows above the 50 th percentile. No single years of extreme hydrological droughts below the 10 th percentile were identified from 1986-2015 whereas a greater proportion of high flows above the 90 th percentile occurred during this period. The persistent single or multiple years of lowest flows between 1954 and 1985 were the recent most critical hydrological drought years identified in the Palgong Mountain forested watershed providing supportive evidence of the severity of past hydrological droughts during that period,applicable to the southeastern South Korea where the study watershed is located. This interpretation agrees with the hydrological drought event years identified from 1951 to the early 1980 s in a related national study that used precipitation proxy data to reconstruct past occurrences of droughts in Korea.
基金Supported by National Natural Science Foundation of China (No. 51079068)
文摘An iterative method was developed for incorporating the well bore boundary into the finite difference model of water flow in variably saturated porous media. Six cases were presented involving groundwater pumping or injection to demonstrate the advantages of the iterative method over the traditional method. For the iterative method, the total flux gradually approached the well discharge and the flux profile was non-uniform. And the iterative method took into account the variation of well bore water table. Compared to the traditional method, the iterative method can simulate the variably saturated flow caused by pumping or injection more realistically.
基金financial support of the National Key R&D Program of China(No.2019YFB1504102)the National Natural Science Foundation of China(52020105001)the National Science Fund for Distinguished Young Scholars(51725404)and their approval of publishing this paper。
文摘Tubing collars’influence on hydrodynamic behavior of annular duct flow has been investigated using Particle Image Velocity(PIV)technology.PIV has become an efficient method for complex transient flows visualization.A water flow loop with two replaceable variable cross-sections(VCS),75-90 mm and 90-110 mm,in a 129 mm inner diameter(ID)pipe was used.The whole field of the variable cross-section annulus(VCSA)was visualized,including forward-facing step(FFS),narrow annulus(NA),and backwardfacing step(BFS)flow.The VCSA ratio and Reynolds(Re)number influence on streamline distribution,velocity distribution,and turbulence intensity were discussed.Results showed that the recirculation is easier to form in BFS than FFS flow under the same condition.The VCSA ratio affects the formation of recirculation zones and the location of the reattachment point.Reynolds number mainly affects BFS flow by influencing the main velocity component-axial velocity.The turbulence intensity is relatively high in BFS than FFS flow and is larger at y/h>1.0 than y/h<1.0.Furthermore,the streamwise cohere nt structures reveal that the first two modes are predominant and represent the main characteristics of the flow by proper orthogonal decomposition(POD)method.
基金support provided by the National Key Research and Development Project of China(No.2017YFC0704100,under the title New Generation Intelligent Building Platform Techniques)Liaoning Natural Science Foundation Guidance Plan(No.20180551057)+1 种基金Dalian High-level Talent Innovation Support Program(Youth Technology Star)(No.2017RQ099)Fundamental Research Funds for the Central Universities(No.DUT20JC47)。
文摘Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a more energy-efficient operation.Determining the differential pressure adjustment value based on the terminal user's real-time demand is one of the critical issues to be addressed during the optimal control process.Furthermore,the online application of the differential pressure setpoint optimization method needs to be considered,along with the stability of the system.This paper proposes a variable differential pressure reset method with an adaptive adjustment algorithm based on the Mamdani fuzzy model.The proposed method was compared with differential pressure reset methods with reference to the chilled water differential temperature,outdoor temperature,and linear model based on the adjustment algorithm.The energy-saving potential,temperature control effect,and avoidance of the most unfavorable thermodynamic loop effects of the four methods were investigated experimentally.The results indicated that,while satisfying the terminal user's energy supply demand and ensuring the avoidance of the most unfavorable thermodynamic loop,the proposed adaptive adjustment algorithm also decreased the differential pressure setpoint value by 25.1%—59.1%and achieved energy savings of 10.6%-45.0%.By monitoring the valve position and supply air temperature of each terminal user,the proposed method exhibited suitable online adaptability and could be flexibly applied to buildings with random load changes.
基金supported by theNationalNatural Science Foundation of China No.12001020.
文摘In this work,we develop a novel high-order discontinuous Galerkin(DG)method for solving the incompressible Navier-Stokes equations with variable density.The incompressibility constraint at cell interfaces is relaxed by an artificial compressibility term.Then,since the hyperbolic nature of the governing equations is recovered,the simple and robust Harten-Lax-van Leer(HLL)flux is applied to discrete the inviscid term of the variable density incompressible Navier-Stokes equations.The viscous term is discretized by the direct DG(DDG)method,the construction of which was initially inspired by the weak solution of a scalar diffusion equation.In addition,in order to eliminate the spurious oscillations around sharp density gradients,a local slope limiting operator is also applied during the highly stratified flow simulations.The convergence property and performance of the present high-order DDG method are well demonstrated by several benchmark and challenging numerical test cases.Due to its advantages of simplicity and robustness in implementation,the present method offers an effective approach for simulating the variable density incompressible flows.
基金The authors gratefully acknowledge the supports from the Research Grants Council of Hong Kong(Project number:CityU 21201119,CityU 11212620,CityU 11215621)City University of Hong Kong(Project number:9610408).
文摘Thermal battery plays an important role in renewable energy utilization towards carbon neutrality.The novel absorption thermal battery(ATB)has excellent performance but suffers from serious capacity attenuation.To address this problem,two capacity regulation methods,i.e.,variable solution flow and variable cooling water flow,are proposed to achieve a demanded discharging rate.The effects of the two regulation strategies on the dynamic discharging characteristics and overall storage performance are comparatively investigated.To demon-strate the adjustability of the output capacity,several stable discharging rates are successfully maintained by the proposed methods.To maintain a higher discharging rate,the stable discharging time has to be sacrificed.As the demanded output increased from 0.5 kW to 6.0 kW,the stable discharging time decreased from 781.8 min to 27.9 min under variable solution flow and from 769.9 min to 30.7 min under variable cooling water flow.With the increase of solution or water flow rate,the energy storage density is improved,while the energy storage efficiency is slightly increased first and decreased later.The regulation method of variable water flow shows relatively lower energy storage efficiency due to the larger pump power.This study could facilitate reasonable development and application of ATB cycles.
文摘A new pressurized feed system of the dual-thrust hybrid rocket motor for flight is presented in this paper.The feed system supplies 90% hydrogen peroxide (90%H 2 O 2) with two different flows of 4.5 and 2 kg s 1.The oxidizer flow is changed through regulating the mass flow of the high-pressure gas and switching the performance modes of the unique oxidizer flow control valve simultaneously.The models of the gas storage container,pressure regulator valve,control orifice,propellant tank,oxidizer flow control valve and cavitating venturi are generated and used to compute the instantaneous pressure,temperature and mass flow rate.There is a good agreement between the simulated and experimental results.Parameter sensitivity analysis is also conducted.It is found that the throat diameter of the cavitating venturi in feed line 1 is the main factor affecting the mass flow in both boost and sustaining phase.Other parameters have limited effects on the mass flow rate and the transition time of the system.
基金supported by the State Key Laboratory of Air-Conditioning Equipment and System Energy Conservation(No.ACSKL2019KT13)National Natural Science Foundation of China(No.51608297 and No.51678024)+2 种基金Scientific Research Project of Beijing Municipal Education Commission(No.KM201910016009 and No.KZ202110016022)Beijing Advanced Innovation Center for Future Urban Design(No.UDC2019011121)Fundamental Research Funds for Beijing University of Civil Engineering and Architecture(No.XI8301).
文摘Chiller model is a key factor to building energy simulation and chiller performance prediction.With spread of new types of electric water chillers that have higher performance and wider operating range,new challenges have been faced by building energy simulation tools and their chiller models.This work takes a new type of electric water chiller as a case study and reevaluates eight typical empirically based models for predicting the energy performance of electric water chiller to verify whether they are suitable for the new type of chiller,using both laboratory test data from chiller manufacturer and online monitoring data from on-site operation of a central cooling plant with chillers of the same type.The prediction ability of the chiller models(including model prediction accuracy and generation ability)in laboratory test and on-site operation situations are examined.The results show that the existing models can well describe the chiller performance in the laboratory test situation but perform poorly in the on-site operation situation.As the best two models in the laboratory dataset,the overall prediction errors of DOE-2 and GN model increase more than 250%and 75%respectively in the field dataset.The big discrepancy of model prediction accuracy in the two situations is mainly due to the differences of evaporator and condenser water flow rates between the laboratory and on-site operation datasets,which indicates the limitations of the empirical chiller models and implies further research in future in order to improve the suitability and reliability of chiller model.