Three dendronized polymers from generation one to generation three have been prepared by complexing negatively charged Frechet-type dendrons with a polyanion, poly(diallydimethylammoniurn chloride) (PDADMAC). The ...Three dendronized polymers from generation one to generation three have been prepared by complexing negatively charged Frechet-type dendrons with a polyanion, poly(diallydimethylammoniurn chloride) (PDADMAC). The gaffing degree has been confirmed mainly by elemental analysis. In dilute solutions of tetrahydrofuran, static light scattering studies indicate that the first generation complex has a coil-like conformation, even more flexible than PDADMAC. The second and third generation complexes exhibit polyelectrolyte behavior. Dynamic light scattering experiments indicate that all the three complexes have almost the same hydrodynamic radius, indicating that they might own similar coil conformation. Atomic force microscopy shows the existence of disordered globules formed by one or a couple of complex coils. All these observations can be explained by the flowerlike coil conformation, which is formed by the intra-molecular association. This is totally different from the stretched chain conformation formed by covalently connected dendronized polymers. This result also explains why some ordered supramolecular structures, found in condensed state of the similar complexes, are not as perfect as those of conventional dendronized polymers.展开更多
基金supported by the National Natural Science Foundation of China(No.20734001)
文摘Three dendronized polymers from generation one to generation three have been prepared by complexing negatively charged Frechet-type dendrons with a polyanion, poly(diallydimethylammoniurn chloride) (PDADMAC). The gaffing degree has been confirmed mainly by elemental analysis. In dilute solutions of tetrahydrofuran, static light scattering studies indicate that the first generation complex has a coil-like conformation, even more flexible than PDADMAC. The second and third generation complexes exhibit polyelectrolyte behavior. Dynamic light scattering experiments indicate that all the three complexes have almost the same hydrodynamic radius, indicating that they might own similar coil conformation. Atomic force microscopy shows the existence of disordered globules formed by one or a couple of complex coils. All these observations can be explained by the flowerlike coil conformation, which is formed by the intra-molecular association. This is totally different from the stretched chain conformation formed by covalently connected dendronized polymers. This result also explains why some ordered supramolecular structures, found in condensed state of the similar complexes, are not as perfect as those of conventional dendronized polymers.