Three-dimensional flowerlike nanostructured metal oxides attached on the surfaces of Fe-based multi-phase nanocrys- talline ribbons (Fe-MNRs) were prepared by a simple way (through immersing the Fe-MNRs in Orange I...Three-dimensional flowerlike nanostructured metal oxides attached on the surfaces of Fe-based multi-phase nanocrys- talline ribbons (Fe-MNRs) were prepared by a simple way (through immersing the Fe-MNRs in Orange II solution). It has been found that the as-prepared Fe-MNRs with 3D flowerlike nanostructures (Fe-MNRs + FNs) exhibit good absorption property for a typical heavy metal ion (Cr^VI) in wastewater, while Fe-MNRs do not possess such properties. The Fe-MNRs + FNs could remove 99% CrvI ions from the solution in 40 min, and this adsorption property can be attributed to the ion exchange between Cr^VI and surface hydroxyl groups (O-H) of 3D flowerlike nanostructures. The present result suggests that the Fe-MNRs + FNs, prepared by facile way, possess great potentials in removing heavy metallic ions in wastewater.展开更多
基金This work was supported by the National Key Basic Research and Development Programme (Grant No.2016YFB0300500) and the National Natural Science Foundation of China (NSFC, Grant Nos. 51571127 and 51771096).
文摘Three-dimensional flowerlike nanostructured metal oxides attached on the surfaces of Fe-based multi-phase nanocrys- talline ribbons (Fe-MNRs) were prepared by a simple way (through immersing the Fe-MNRs in Orange II solution). It has been found that the as-prepared Fe-MNRs with 3D flowerlike nanostructures (Fe-MNRs + FNs) exhibit good absorption property for a typical heavy metal ion (Cr^VI) in wastewater, while Fe-MNRs do not possess such properties. The Fe-MNRs + FNs could remove 99% CrvI ions from the solution in 40 min, and this adsorption property can be attributed to the ion exchange between Cr^VI and surface hydroxyl groups (O-H) of 3D flowerlike nanostructures. The present result suggests that the Fe-MNRs + FNs, prepared by facile way, possess great potentials in removing heavy metallic ions in wastewater.