期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Preparation of α-High Strength Gypsum from Flue Gas Desulfurization Gypsum Pretreated by Hydrothermal-aging Method
1
作者 苏一鑫 GAO Lili +3 位作者 陈学青 LI Zhishui 李雲 CAO Jilin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期75-81,共7页
The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performanc... The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade. 展开更多
关键词 flue gas desulphurization gypsum α-calcium sulfate hemihydrate hydrothermal-aging method N N'-methylenebisacrylamide prismatic CSD
下载PDF
Activation of Rejected Fly Ash Using Flue Gas Desulphurization (FGD) Sludge 被引量:2
2
作者 乔秀臣 POONChisun LINZong-shou 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第4期84-88,共5页
Low-grade fly ash (rejected fly ash,rFA),a significant portion of the pulverized fuel ash (PFA) produced from coal-fired power plants and rejected from the ash classifying process,remains unused due to its high carbon... Low-grade fly ash (rejected fly ash,rFA),a significant portion of the pulverized fuel ash (PFA) produced from coal-fired power plants and rejected from the ash classifying process,remains unused due to its high carbon content and large particle size (>45μm).But it is thought that the rejected ash may have potential uses in chemical stabilization/solidification (S/S) processes which need relatively lower strengths and a lower chemical reactivity.Flue Gas Desulphurisation (FGD) sludge is a by-product of air pollution control equipment in coal fired power plants whose chemical composition is mainly gypsum.As there is no effective usage of both of these two materials,it is of interest to research on the possible activation of rFA using FGD.This paper presents experimental results of a study on the properties of rFA activated by the FGD in rFA-cement pastes.Different percentages of FGD were added into the mix to study the effects of the FGD on the reaction of the rFA blended cement pastes.The results show that FGD takes effect as an activator only at late curing ages.Adding Ca(OH) 2 enhances the effect of FGD on activating the hydration of rFA.Also,10% FGD by weight of rFA is the optimal addition in the rFA-cement pastes.The results of the compressive strength measurements correlate well with the porosity results. 展开更多
关键词 rejected fly ash PFA strength development ACTIVATOR flue gas desulphurization sludge FGD
下载PDF
Utilization of Thermally Treated Flue Gas Desulfurization (FGD) Gypsum and Class-C Fly Ash (CFA) to Prepare CFA-Based Geopolymer 被引量:3
3
作者 郭晓潞 施惠生 Warren A Dick 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期132-138,共7页
The feasibility of utilization of flue gas desulfurization (FGD) gypsum and Class-C fly ash (CFA) to prepare CFA-based geopolymer were studied. The results showed that geopolymer made from 90% CFA and 10% FGD gyps... The feasibility of utilization of flue gas desulfurization (FGD) gypsum and Class-C fly ash (CFA) to prepare CFA-based geopolymer were studied. The results showed that geopolymer made from 90% CFA and 10% FGD gypsum (FGDG) which was thermally treated at 800 ℃ for 1 h obtained the better compressive strength of 37.0 MPa. The micro characteristics and structures of the geopolymer samples of CFA and CFA-FGDG were tested by XRD, FT-IR, and SEM-EDXA after these samples cured at 75 ℃ for 8 h followed by 23 ℃ for 28 d. Both the geopolymer samples of CFA and CFA-FGDG have significant asymmetric stretching of A1-O/Si-O bonds and Si-O-Si / Si-O-A1 bending band. In geopolymer sample of CFA-FGDG, a small quantity of lathy products probably being the ettringite wrapped over the spherical fly ash particle, and the concentration of sulfur is much more than that in geopolymer sample of CFA. It is indicated that FGD gypsum may react during alkali-activated and geopolymeric process. 展开更多
关键词 flue gas desulphurization (FGD)gypsum class-C fly ash(CFA) GEOPOLYMER thermal treatment
下载PDF
Investigations on removal of SO_2 from flue gas by aerosol formation in pulsed corona discharge process
4
作者 Zhao Zhi bin, Liu Ji yong Department of Environmental and Chemical Technology, Northeast Electric Power Research Institute, Shenyang 110006, China Yu Cun qing, Li Ji hong Department of Environmental Protection, Bureau of Northeast Electric Power Industry, Shenyang 110006, China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1998年第2期17-23,共7页
The removal of SO 2 from flue gas by pulsed corona discharge in presence of ammonia was experimentally investigated. The results showed that the SO 2 removal mainly depends on thermal reaction of SO 2 with NH 3 and en... The removal of SO 2 from flue gas by pulsed corona discharge in presence of ammonia was experimentally investigated. The results showed that the SO 2 removal mainly depends on thermal reaction of SO 2 with NH 3 and enhancements of 0%—25% by pulsed corona discharge in the range of the specific energy 0—5 Wh/Nm 3. The aerosol mass concentration, mainly composed of ammonium sulfate, increased with specific energy dissipated into the reactor. With an initial concentration of 2000—2100 ppmv SO 2 and energy consumption of 3 Wh/Nm 3, when a stoichiometric amount of ammonia is injected, the removal efficiency of SO 2 and percentage of ammonium sulfates in reaction products are all ≥80%. The collection efficiency of the reactor for aerosol is about 74% at a flue gas temperature of 60 to 65℃ and a water vapor content of 9% to 11% volume. 展开更多
关键词 pulse corona discharge desulphurization of flue gas collection of reaction products.
下载PDF
Mercury transportation in soil via using gypsum from flue gas desulfurization unit in coal-fired power plant 被引量:4
5
作者 Kelin Wang William Orndorff +1 位作者 Yan Cao Weiping Pan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第9期1858-1864,共7页
The mercury flux in soils was investigated, which were amended by gypsums from flue gas desulphurization (FGD) units of coal- fired power plants. Studies have been carried out in confined greenhouses using FGD gypsu... The mercury flux in soils was investigated, which were amended by gypsums from flue gas desulphurization (FGD) units of coal- fired power plants. Studies have been carried out in confined greenhouses using FGD gypsum treated soils. Major research focus is uptakes of mercury by plants, and emission of mercury into the atmosphere under varying application rates of FGD gypsum, simulating rainfall irrigations, soils, and plants types. Higher FGD gypsum application rates generally led to higher mercury concentrations in the soils, the increased mercury emissions into the atmosphere, and the increased mercury contents in plants (especially in roots and leaves). Soil properties and plant species can play important roles in mercury transports. Some plants, such as tall fescue, were able to prevent mercury from atmospheric emission and infiltration in the soil. Mercury concentration in the stem of plants was found to be increased and then leveled off upon increasing FGD gypsum application. However, mercury in roots and leaves was generally increased upon increasing FGD gypsum application rates. Some mercury was likely absorbed by leaves of plants from emitted mercury in the atmosphere. 展开更多
关键词 flue gas desulphurization gypsums SOILS mercury emissions mercury uptakes mercury infiltration greenhouse tests
原文传递
Dynamic optimization oriented modeling and nonlinear model predictive control of the wet limestone FGD system 被引量:2
6
作者 Lukuan Yang Wenqi Zhong +2 位作者 Li Sun Xi Chen Yingjuan Shao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期832-845,共14页
Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(W... Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems. 展开更多
关键词 Wet limestone flue gas desulphurization(WFGD)system MODELING Nonlinear model predictive control(NMPC) Multi-objective optimization
下载PDF
A pilot-scale study of selective desulfurization via urea addition in iron ore sintering 被引量:3
7
作者 Hong-ming Long Xue-jian Wu +3 位作者 Tie-jun Chun Zhan-xia Di Ping Wang Qing-min Meng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第11期1239-1243,共5页
The iron ore sintering process is the main source of SO_2 emissions in the iron and steel industry. In our previous research, we proposed a novel technology for reducing SO_2 emissions in the flue gas in the iron ore ... The iron ore sintering process is the main source of SO_2 emissions in the iron and steel industry. In our previous research, we proposed a novel technology for reducing SO_2 emissions in the flue gas in the iron ore sintering process by adding urea at a given distance from the sintering grate bar. In this paper, a pilot-scale experiment was carried out in a commercial sintering plant. The results showed that, compared to the SO_2 concentration in flue gas without urea addition, the SO_2 concentration decreased substantially from 694.2 to 108.0 mg/m^3 when 0.10wt% urea was added. NH_3 decomposed by urea reacted with SO_2 to produce(NH_4)_2SO_4, decreasing the SO_2 concentration in the flue gas. 展开更多
关键词 iron ore sintering urea flue gas desulphurization
下载PDF
INTERACTION BETWEEN SO_2 FROM FLUE GAS AND SORBENT PARTICLES IN DRY FGD PROCESSES
8
作者 HaiyingQi ChangfuYou XuchangXu 《China Particuology》 SCIE EI CAS CSCD 2005年第1期141-141,共1页
Among the technologies to control SO2 emission from coal-fired boilers, the dry flue gas desulphurization (FGD) method, with appropriate modifications, has been identified as a candidate for realizing high SO2 removal... Among the technologies to control SO2 emission from coal-fired boilers, the dry flue gas desulphurization (FGD) method, with appropriate modifications, has been identified as a candidate for realizing high SO2 removal efficiency to meet both technical and economic requirements, and for making the best quality byproduct gypsum as a useful additive for improving alkali soil. Among the possible modifications two major factors have been selected for study: (1) favorable chemical reaction kinetics at elevated temperatures and the sorbent characteristics; (2) enhanced diffusion of SO2 to the surface and within the pores of sorbent particles that are closely related to gas-solid two-phase flow patterns caused by flue gas and sorbent particles in the reactor. To achieve an ideal pore structure, a sorbent was prepared through hydration reaction by mixing lime and fly ash collected from bag house of power plants to form a slurry, which was first dewatered and then dried. The dry sorbent was found capable of rapid conversion of 70% of its calcium content at 700℃, reaching a desulphurization efficiency of over 90% at a Ca/S ratio of 1.3. Experiments confirmed that the diffusion effect of SO2 is an important factor and that gas-solid two-phase flow plays a key role to mixing and contact between SO2 and sorbent particles. For designing the FDG reactor, a new theoretical drag model was developed by combination of CFD with the Energy Minimization Multi-Scale (EMMS) theory for dense fluidi-zation systems. This new drag model was first verified by comparing calculated and measured drag values, and was then implemented in simulation of gas-solid two-phase flow in two circulating fluidized beds with different sizes and flow parameters. One riser has diameter and height of 0.15 m×3m and another one 0.2m×14.2m. Their superficial gas velocities are 4 and 5.2 m·s-1, respectively, and the circulating rate 53 and 489 kg·(m-2·s-1). FCC particles were used in both cases. The results show that not only the static pressure drop along the riser height, but also radial distributions of particle volume fraction have been very well predicted in comparison with experiments. The new drag model is expected to shed more light on the further improvement of SO2 diffusion to solid sorbent and optimization of reactor structure. 展开更多
关键词 interaction between gas and particles flue gas desulphurization (FGD) diffusion of SO2 Energy Minimization Multi-Scale (EMMS) drag model
原文传递
Distribution and Accumulation of Major and Trace Elements in Gypsum Samples from Lignite Combustion Power Plant
9
作者 Majda Pavlin Radojko Jacimovic +3 位作者 Andrej Stergarsek Peter Frkal Maja Koblar Milena Horvat 《American Journal of Analytical Chemistry》 2018年第12期602-621,共20页
Flue gas containing volatile elements, fine fly ash particulates not retained by particle control devices, and limestone are the most important sources of trace and major elements (TMEs) in wet flue gas desulphurizati... Flue gas containing volatile elements, fine fly ash particulates not retained by particle control devices, and limestone are the most important sources of trace and major elements (TMEs) in wet flue gas desulphurization (WFGD) gypsum. In this study, samples of gypsum slurry were separated into fine and coarse fractions. Multi-elemental analysis of 45 elements in the different size fractions of gypsum, slurry waters and lignite were performed by k0-INAA (k0-instrumental neutron activation analyses). The study found that the volatile elements (Hg, Se and halogens) in the flue gas accumulate in the fine fractions of gypsum. Moreover, the concentrations of most TMEs are considerably higher in the fine fractions compared to the coarse fractions. The exceptions are Ca and Sr that primarily originate from the limestone. Variations of TMEs in the finer fractions are dependent on the presence of CaSO4·2H2O that is the main constituent of the coarse fraction. Consequently, the content of TMEs in the fine fraction is highly dependent on the efficiency of separating the fine fraction from the coarse fraction. Separation of the finer fraction, representing about 10% of the total gypsum, offers the possibility to remove effectively TMEs from WFGD slurry. 展开更多
关键词 Trace and Major Elements Wet flue gas desulphurization Gypsum Particle Size Fractions Mercury and Selenium Sample Preparation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部