期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Fluid Dynamic Field in BozhongDepression, Bohai Bay Basin
1
作者 Ye Jiaren Chen Bonghan Yang Xianghua Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2001年第1期84-89,共6页
The data from regional geology, boreholes, geophysics and tests are integrated to analyze the fluid dynamic field in the Bozhong depression, Bohai Bay basin. The current geothermal gradient is determined to be about ... The data from regional geology, boreholes, geophysics and tests are integrated to analyze the fluid dynamic field in the Bozhong depression, Bohai Bay basin. The current geothermal gradient is determined to be about 2.95 /100 m by integrating 266 drill-stem test (DST) measurements and comparing with the global average value. The paleogeothermal gradients are calculated from the homogenization temperatures of saline inclusions, which vary both laterally and vertically. The data from sonic logs, well tests and seismic velocities are used to investigate the pressure variations in the study area. The mudstone compaction is classified as three major types: normal compaction and normal pressure, under-compaction and overpressure, and past-compaction and under-overpressure. The current pressure profile is characterized by normal pressure, sight pressure and intense overpressure from top to bottom The faults, unconformity surfaces and interconnecting pores constitute a complex network of vertical and horizontal fluid flows within the depression. The fluid potential energy profiles present a 'double-deck' structure. The depocenters are the area of fluids supply, whereas the slopes and uplifts are the main areas of fluids charge. 展开更多
关键词 Bozhong depression fluid dynamic field geothermal field pressure field potential energy field.
下载PDF
Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling 被引量:1
2
作者 梅书哲 王权 +8 位作者 郝美兰 徐健凯 肖红领 冯春 姜丽娟 王晓亮 刘峰奇 徐现刚 王占国 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第9期82-86,共5页
Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform perfor... Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform performanee, the flow field and ternperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to stud,v the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding~ significance for the growth of GaN fihn materials. 展开更多
关键词 MOCVD Flow field and Temperature field in GaN-MOCVD Reactor Based on Computational fluid dynamics Modeling GAN
下载PDF
NUMERICAL SIMULATION BY COMPUTATIONAL FLUID DYNAMICS AND EXPERIMENTAL STUDY ON STIRRED BIOREACTOR WITH PUNCHED IMPELLER 被引量:1
3
作者 WANG Yu HE Pingting +1 位作者 YE Hong XIN Zhihong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期42-45,共4页
Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred... Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value. 展开更多
关键词 Stirred bioreactor with punched impeller Computational fluid dynamics(CFD)Particle image velocimetry(PIV) Flow field Temperature field
下载PDF
Application of FLUENT on fine-scale simulation of wind field over complex terrain 被引量:2
4
作者 Lei Li LiJie Zhang +3 位作者 Ning Zhang Fei Hu Yin Jiang WeiMei Jiang 《Research in Cold and Arid Regions》 2010年第5期411-418,共8页
The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FL... The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FLUENT on describing the wind field details over a complex terrain. The results of the numerical tests show that FLUENT can simulate the wind field over extremely complex terrain, which cannot be simulated by mesoscale models. The reason why FLUENT can cope with extremely complex terrain, which can not be coped with by mesoscale models, relies on some particular techniques adopted by FLUENT, such as computer-aided design (CAD) technique, unstructured grid technique and finite volume method. Compared with mesoscale models, FLUENT can describe terrain in much more accurate details and can provide wind simulation results with higher resolution and more accuracy. 展开更多
关键词 FLUENT Computational fluid dynamics (CFD) complex terrain wind field fine-scale simulation
下载PDF
CFD Study on Local Fluid-to-Wall Heat Transfer in Packed Beds and Field Synergy Analysis 被引量:4
5
作者 PENG Wenping XU Min +1 位作者 HUAI Xiulan LIU Zhigang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第2期161-170,共10页
To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio(D/dp<10) have now been considered in many areas. Fluid-to-wall heat transfer... To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio(D/dp<10) have now been considered in many areas. Fluid-to-wall heat transfer coefficient is an important factor determining the performance of this type of beds. In this work, local fluid-to-wall heat transfer characteristic in packed beds was studied by Computational Fluid Dynamics(CFD) at different Reynolds number for D/dp=1.5, 3.0 and 5.6. The results show that the fluid-to-wall heat transfer coefficient is oscillating along the bed with small tube-to-particle diameter ratio. Moreover, this phenomenon was explained by field synergy principle in detail. Two arrangement structures of particles in packed beds were recommended based on the synergy characteristic between flow and temperature fields. This study provides a new local understanding of fluid-to-wall heat transfer in packed beds with small tube-to-particle diameter ratio. 展开更多
关键词 Packed bed fluid-to-wall heat transfer field synergy principle Computational fluid dynamics Heat transfer intensification
原文传递
Analysis of gas-solid flow and shaft-injected gas distribution in an oxygen blast furnace using a discrete element method and computational fluid dynamics coupled model 被引量:3
6
作者 Zeshang Dong Jingsong Wang +2 位作者 Haibin Zuo Xuefeng She Qingguo Xue 《Particuology》 SCIE EI CAS CSCD 2017年第3期63-72,共10页
lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace b... lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center. 展开更多
关键词 Oxygen blast furnace Discrete element method Computational fluid dynamics Shaft gas injection Gas-solid flow Pressure field
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部