期刊文献+
共找到836篇文章
< 1 2 42 >
每页显示 20 50 100
Hydrodynamic analysis of carbon nanotube clusters in distributor-less conical fluidized beds with step-by-step scaling
1
作者 Tianle Zhang Wenjuan Bai +3 位作者 Qianpeng Dong Dianming Chu Lianlian Wang Yan He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期117-125,共9页
As a high-performance material with great application potential,the application of carbon nanotubes has been limited by their production volume.A distributor-less conical fluidized bed is the main equipment used in th... As a high-performance material with great application potential,the application of carbon nanotubes has been limited by their production volume.A distributor-less conical fluidized bed is the main equipment used in the industrial production of carbon nanotubes.To improve the production volume and product quality of carbon nanotubes,the study of fluidized-bed-diameter scaling is important.Three different diameters of distributor-less conical fluidized beds were established,and then the particle behavior and bubble characteristics of carbon nanotube clusters at these bed diameters were investigated.Time-series and wavelet analysis methods were used to analyze the pressure-fluctuation signals inside the fluidized beds.Results showed that the distributor-less design caused the airflow to break through the middle of the bed,which did not change with the change in bed diameter.The powder-bridging phenomenon of carbon nanotube clusters in a 100-mm-diameter fluidized bed was related to the special microstructure of carbon nanotube clusters.The frequency of pressure fluctuations in the bed decreased nonlinearly with increasing bed diameter.This study can guide the design and scale-up of distributor-less conical fluidized beds,especially for the scale-up of carbon nanotube production equipment,which can contribute to the improvement of carbon nanotubes’capacity and quality in industrial production. 展开更多
关键词 Carbon nanotubes fluidized bed Multiphase flow Scale-up Multiscale
下载PDF
Predicting impact forces on pipelines from deep-sea fluidized slides:A comprehensive review of key factors
2
作者 Xingsen Guo Ning Fan +5 位作者 Defeng Zheng Cuiwei Fu Hao Wu Yanjun Zhang Xiaolong Song Tingkai Nian 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期211-225,共15页
Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on ... Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures. 展开更多
关键词 Deep-sea fluidized slides Pipes Impact forces Shear behavior of slides Interface contact conditions Spatial relation
下载PDF
Simulation of gas-solid flow characteristics of the circulating fluidized bed boiler under pure-oxygen combustion conditions
3
作者 Kaixuan Gao Xiwei Ke +5 位作者 Bingjun Du Zhenchuan Wang Yan Jin Zhong Huang Yanhong Li Xuemin Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期9-19,共11页
Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the convention... Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler. 展开更多
关键词 Circulating fluidized bed Pure-oxygen combustion Gas-solid flow characteristics SIMULATION CO_(2)capture
下载PDF
Experimental study on secondary air mixing along the bed height in a circulating fluidized bed with a multitracer-gas method
4
作者 Qingyu Zhang Leming Cheng +3 位作者 Kun Li Qixun Kang Qiang Guo Chaogang Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期54-62,共9页
A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Expe... A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic. 展开更多
关键词 Circulating fluidized bed Secondary air injection Gas mixing Multitracer-gas method
下载PDF
Particle residence time distribution and axial dispersion coefficient in a pressurized circulating fluidized bed by using multiphase particle-in-cell simulation
5
作者 Jinnan Guo Daoyin Liu +2 位作者 Jiliang Ma Cai Liang Xiaoping Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期167-176,共10页
The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-... The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient. 展开更多
关键词 Pressurized circulating fluidized bed MP-PIC method Residence time distribution Axial dispersion coefficient
下载PDF
Mathematical Modelling and Design of Helical Coil Heat Exchanger for Production of Hot Air for Fluidized Bed Dryer
6
作者 Iniubong James Uwa Uwem Ekwere Inyang Innocent Oseribho Oboh 《Advances in Chemical Engineering and Science》 CAS 2024年第3期125-136,共12页
In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil h... In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers. 展开更多
关键词 Helical Coil Heat Exchanger fluidized Bed Dryer Heat Transfer Output Air Temperature
下载PDF
Heat and Mass Transfer for a Nanofluid Flow in Fluidized Bed Dryer in Presence of Induced Magnetic Field
7
作者 Kiptum J. Purity Mathew N. Kinyanjui Edward R. Onyango 《Journal of Applied Mathematics and Physics》 2024年第4期1401-1425,共25页
This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow i... This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow in a Fluidized bed dryer was developed using the nonlinear partial differential equations. Due to their non-linearity, the equations were solved numerically by use of the finite difference method. The effects of physical flow parameters on velocity, temperature, concentration and magnetic induction profiles were studied and results were presented graphically. From the mathematical analysis, it was deduced that addition of silver nanoparticles into the fluid flow enhanced velocity and temperature profiles. This led to improved heat transfer in the fluidized bed dryer, hence amplifying the tea drying process. Furthermore, it was noted that induced magnetic field tends to decrease the fluid velocity, which results in uniform distribution of heat leading to efficient heat transfer between the tea particles and the fluid, thus improving the drying process. The research findings provide information to industries on ways to optimize thermal performance of fluidized bed dryers. 展开更多
关键词 Heat Transfer Induced Magnetic Field NANOFLUID fluidized Bed Dryer
下载PDF
Behavior and mechanism of pre-oxidation improvement on fluidization in the fluidized reduction of titanomagnetite
8
作者 Haoyan Sun Ajala Adewole Adetoro +1 位作者 Zhiqiang Wang Qingshan Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2458-2465,共8页
The direct reduction process is an important development direction of low-carbon ironmaking and efficient comprehensive utilization of poly-metallic iron ore,such as titanomagnetite.However,the defluidization of reduc... The direct reduction process is an important development direction of low-carbon ironmaking and efficient comprehensive utilization of poly-metallic iron ore,such as titanomagnetite.However,the defluidization of reduced iron particles with a high metallization degree at a high temperature will seriously affect the operation of fluidized bed reduction.Coupling the pre-oxidation enhancing reduction and the particle surface modification of titanomagnetite,the behavior and mechanism of pre-oxidation improvement on fluidization in the fluidized bed reduction of titanomagnetite are systematically studied in this paper.Pre-oxidation treatment of titanomagnetite can significantly lower the critical stable reduction fluidization gas velocity to 0.17 m/s,which is reduced by 56%compared to that of titanomagnetite reduction without pre-oxidation,while achieving a metallization degree of>90%,Corresponding to the different reduction fluidization behaviors,three pre-oxidation operation regions have been divided,taking oxidation degrees of 26%and 86%as the boundaries.Focusing on the particle surface morphology evolution in the pre-oxidation-reduction process,the relationship between the surface morphology of pre-oxidized ore and the reduced iron with fluidization properties is built.The improving method of pre-oxidation on the reduction fluidization provides a novel approach to prevent defluidization by particle surface modification,especially for the fluidized bed reduction of poly-metallic iron ore. 展开更多
关键词 FLUIDIZATION direct reduction PRE-OXIDATION TITANOMAGNETITE iron whisker
下载PDF
Particle agglomeration and inhibition method in the fluidized pyrolysis reaction of waste resin
9
作者 Congjing Ren Peng Zhang +3 位作者 Qi Song Zhengliang Huang Yao Yang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期135-147,共13页
This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and... This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles. 展开更多
关键词 Pyrolysis reaction of waste resin FLUIDIZATION Particle agglomeration KAOLIN
下载PDF
Pre-reduction of WO_(3)-Co_(3)O_(4)by H_(2)-C_(2)H_4 in a fluidized bed
10
作者 Huijun Shang Hengli Li +2 位作者 Weijun Li Feng Pan Zhan Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期273-284,共12页
In order to avoid the formation ofηphase(W_(6)Co_(6)C or W_(3)Co_(3)C)that adversely affects the sintering process and its products in the preparation process of ultra-fine WC-Co powder,a technical route of prereduct... In order to avoid the formation ofηphase(W_(6)Co_(6)C or W_(3)Co_(3)C)that adversely affects the sintering process and its products in the preparation process of ultra-fine WC-Co powder,a technical route of prereduction of WO_(3)-Co_(3)O_(4)to WO_(2)-Co and then deep reduction carbonization to WC-Co powder has been proposed.This study mainly investigates the influence of gas partial pressure on the pre-reduction process of WO_(3)-Co_(3)O_(4)under a mixed atmosphere of H_(2)-C_(2)H_(4)-Ar at 600℃and establishes the kinetic equations of pre-reduction and carbon evolution.The results indicate that increasing the partial pressure of hydrogen is conducive to the rapid and complete conversion of WO_(3) to WO_(2).High carbon content can be generated by the deposition of C_(2)H_(4),and it hinders the diffusion of the reducing gas;WO_(3)still cannot be completely reduced to WO_(2)as the partial pressure of C_(2)H_(4) increases to 60%.For the carbon evolution of C_(2)H_(4),the carbon amount is positively related to the H_(2)partial pressure,but it shows the highest amount and evolution rate when the ethylene partial pressure is 20%.Based on the reduction rate curves of WO_(3) and carbon evolution rate curves of C_(2)H_(4),the rate equations of pre-reduction and carbon evolution of WO_(3)-Co_(3)O_(4)system at 600℃are established.The pre-reduction reaction belongs to the first-order reaction,and its equation is expressed as follows:r=-(dw_(WO_(3)))/dt=(9±0.15)×10^(-2)×P_(H_(2))^(0.44)P_(C_(2)H_(4))&(0.57)The carbon deposition rate equation of C_(2)H_(4) can be expressed as follows:r=-(dc_C)/dt=r_f-r_b≌7.35×10^(-2)×P_(C_(2)H_(4))^(0.31) 展开更多
关键词 FLUIDIZATION WO_(3)-Co_(3)O_(4) Reduction Carbon deposition Rate equation
下载PDF
Investigation into the operation of an autothermal two-section subbituminous coal fluidized bed gasifier
11
作者 Nikolay Abaimov Alexander Ryzhkov +3 位作者 Alexey Dubinin Lu Ding Vladimir Tuponogov Sergey Alekseenko 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第3期190-203,共14页
Using a newly developed experimental setup,the features and advantages of an autothermal single-casing atmospheric sub-bituminous coal fluidized bed air-blown gasifier,combining a combustion and gasification section,a... Using a newly developed experimental setup,the features and advantages of an autothermal single-casing atmospheric sub-bituminous coal fluidized bed air-blown gasifier,combining a combustion and gasification section,and mixing the dispersed phase(inert material,char)and heat exchange between them through an annular transfer device,have been revealed.To increase the efficiency of the gasifier,an experimental-computational method was developed find the conditions for optimal operation,combining changing the annular flow's geometry and regulating the primary air for gasification.A simple and reliable multizone thermodynamic calculation model makes it possible to predict the composition of char and syngas in the gasification section with acceptable accuracy.This method confirmed that a two-section fluidized bed gasifier can provide efficient gasification of solid fuels and is suitable for use in small-scale cogeneration plants.Syngas with a heating value of 3.6-4.5 MJ/m^(3)and CGE of 38.2%-42.3%was obtained in the experimental setup without optimizing the primary air flow rate.With optimization,the indicators increased to the heating value of syngas of 5.20-5.34 MJ/m^(3)and CGE of 42.5%-50.0%.With heat regeneration of 0.8,CGE increases to 70%. 展开更多
关键词 COAL SYNGAS GASIFICATION Bubbling fluidized bed THERMODYNAMICS Modeling
下载PDF
Scale-up and thermal stability analysis of fluidized bed reactors for ethylene polymerization
12
作者 Xiaoqiang Fan Jingyuan Sun +4 位作者 Jingdai Wang Zhengliang Huang Zuwei Liao Guodong Han Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期281-290,共10页
A set of hydrodynamic similarity laws is applied to the scale-up of ethylene polymerization fluidized bed reactors(FBRs)under the condensed mode operation.The thermal stability of open-loop controlled FBRs is investig... A set of hydrodynamic similarity laws is applied to the scale-up of ethylene polymerization fluidized bed reactors(FBRs)under the condensed mode operation.The thermal stability of open-loop controlled FBRs is investigated by the homotopy continuation method.And the Hopf bifurcation point is selected as an index of the thermal stability similarity.The simulation results show the similarity in state variables,operation parameters,the space-time yield(STY),and the thermal stability of FBRs with different scales.Furthermore,the thermal stability behaviors and similarity of the closed-loop controlled FBRs with different scales are analyzed.The observed similar trend of Hopf bifurcation curves reveals the similarity in the thermal stability of closed-loop controlled FBRs with different scaling ratios.In general,the results of the thermal stability similarity confirm that the hydrodynamics scaling laws proposed in the work are applicable to the scale-up of FBRs under the condensed mode operation. 展开更多
关键词 STABILITY Scale-up POLYMERIZATION Bifurcation theory fluidized bed
下载PDF
Comparative analysis on gas–solid drag models in MFIX-DEM simulations of bubbling fluidized bed
13
作者 Ruiyu Li Xiaole Huang +6 位作者 Yuhao Wu Lingxiao Dong Srdjan Beloševic Aleksandar Milicevic Ivan Tomanovic Lei Deng Defu Che 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期64-75,共12页
In this study,the open-source software MFIX-DEM simulations of a bubbling fluidized bed(BFB)are applied to assess nine drag models according to experimental and direct numerical simulation(DNS)results.The influence of... In this study,the open-source software MFIX-DEM simulations of a bubbling fluidized bed(BFB)are applied to assess nine drag models according to experimental and direct numerical simulation(DNS)results.The influence of superficial gas velocity on gas–solid flow is also examined.The results show that according to the distribution of time-averaged particle axial velocity in y direction,except for Wen–Yu and Tenneti–Garg–Subramaniam(TGS),other drag models are consistent with the experimental and DNS results.For the TGS drag model,the layer-by-layer movement of particles is observed,which indicates the particle velocity is not correctly predicted.The time domain and frequency domain analysis results of pressure drop of each drag model are similar.It is recommended to use the drag model derived from DNS or fine grid computational fluid dynamics–discrete element method(CFD-DEM)data first for CFD-DEM simulations.For the investigated BFB,the superficial gas velocity less than 0.9 m·s^(-1) should be adopted to obtain normal hydrodynamics. 展开更多
关键词 MFIX-DEM Simulation Dense flow GAS-SOLID Bubbling fluidized bed Drag model
下载PDF
Influences of regeneration atmospheres on structural transformation and renderability of fluidized catalytic cracking catalyst
14
作者 Haigang Zhang Zhongjie Shen +1 位作者 Jianhong Gong Haifeng Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期71-80,共10页
The regeneration of fluidized catalytic cracking(FCC)catalysts is an essential process in petroleum processing.The current study focused the regeneration reaction characteristics of spent fluidized catalytic cracking ... The regeneration of fluidized catalytic cracking(FCC)catalysts is an essential process in petroleum processing.The current study focused the regeneration reaction characteristics of spent fluidized catalytic cracking catalyst(SFCC)at different atmospheres with influences on pore evolution and activity,for a potential way to reduce emission,produce moderate chemical product(CO),and maintain catalyst activity.The results show that regeneration in air indicates a satisfaction on removing coke on the catalyst surface while giving a poor effect on eliminating the coke inside micropores.This is attributed that the combustion in air led to a higher temperature and further transformed kaolinite phase to silicaaluminum spinel crystals,which tended to collapse and block small pores or expand large pores,with similar results observed in pure O_(2)atmosphere.Nevertheless,catalysts regenerated in O_(2)/CO_(2)diminished the combustion damage to the pore structure,of which the micro porosity after regeneration increased by 32.4% and the total acid volume rose to 27.1%.The regeneration in pure CO_(2)displayed low conversion rate due to the endothermic reaction and low reactivity.The coexistence of gasification and partial oxidation can promote regeneration and maintain the original structure and good reactivity.Finally,a mechanism of the regeneration reaction at different atmospheres was revealed. 展开更多
关键词 fluidized catalytic cracking Coke deposit REGENERATION Pore structure Gasification and combustion
下载PDF
Effects of particle type on the particle fluidization and distribution in a liquid–solid circulating fluidized bed boiler
15
作者 Feng Jiang Xiao Li +1 位作者 Guopeng Qi Xiulun Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期53-66,共14页
A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four type... A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four types of engineering plastic particles with different physical properties are selected as the solid working media. The effect of particle types on the fluidization and distribution of particles in the boiler is investigated under different feedwater flow rates and amount of added particles by using the charge couple device image measurement and acquisition system. The results show that all kinds of particles can't be normally fluidized and accumulate in the drum at low amount of added particles and feedwater flow rate. The particles with great density and low sphericity are more likely to accumulate. The average solid holdup in the riser tubes increases with the increase in feedwater flow rate and the amount of added particles. The non-uniform degree of particle distribution in the riser tubes generally decreases with the increase in feedwater flow rate and the amount of added particles. The particles with small density and settling velocity have high average solid holdup in the riser tubes under close sphericity. In generally,the smaller the density and settling velocity, the more uniform the particle distribution in the riser tubes.Three-dimensional diagrams of the non-uniform degree of particle distribution in the riser tubes of the boiler are established. 展开更多
关键词 Circulating fluidized bed boiler Particle type Particle distribution Visualization Fouling prevention
下载PDF
Analysis of fluidized zone in transparent soil under jet induced by pipe leakage
16
作者 Li-jie Jiang Bin Zhang +1 位作者 Sai-hua Huang Yu Shao 《Water Science and Engineering》 EI CAS CSCD 2023年第2期203-210,共8页
Jets caused by burst tubes erode the surrounding soil, eventually leading to issues such as ground collapse. It is therefore highly important to study the mechanisms of soil erosion caused by jets after pipeline leaka... Jets caused by burst tubes erode the surrounding soil, eventually leading to issues such as ground collapse. It is therefore highly important to study the mechanisms of soil erosion caused by jets after pipeline leakage. To investigate the water-soil interaction mechanisms of pipe leakage, this study used transparent soil and developed a three-dimensional experimental device to observe the fluidization process. Changes in the boundary of the fluidization transition area were investigated, and a formula for calculating the soil damage area was derived. The results showed three different shapes of the fluidized cavity appearing in the fluidization process. The particles initially moved upward and then gradually transitioned into a state of backflow. The effects of particle size, upper load, and porosity on fluidization were also analyzed. It was found that soil with a large particle size and a lower porosity under a heavy upper load can effectively restrain fluidization. Therefore, large-diameter and dense soil can be used as pipe-covering material. 展开更多
关键词 Water-soil interaction fluidized cavity Transparent soil Particle image velocimetry Pipe leakage
下载PDF
Fluidized magnetization roasting of refractory siderite-containing iron ore via preoxidation-low-temperature reduction
17
作者 Haoyan Sun Zheng Zou +1 位作者 Meiju Zhang Dong Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1057-1066,共10页
Magnetization roasting is one of the most effective way of utilizing low-grade refractory iron ore.However,the reduction roasting of siderite(FeCO3)generates weakly magnetic wüstite,thus reducing iron recovery vi... Magnetization roasting is one of the most effective way of utilizing low-grade refractory iron ore.However,the reduction roasting of siderite(FeCO3)generates weakly magnetic wüstite,thus reducing iron recovery via weak magnetic separation.We systematically studied and proposed the fluidized preoxidation-low-temperature reduction magnetization roasting process for siderite.We found that the maghemite generated during the air oxidation roasting of siderite would be further reduced into wüstite at 500 and 550℃due to the unstable intermediate product magnetite(Fe_(3)O_(4)).Stable magnetite can be obtained through maghemite reduction only at low temperature.The optimal fluidized magnetization roasting parameters included preoxidation at 610℃for 2.5 min,followed by reduction at 450℃for 5 min.For roasted ore,weak magnetic separation yielded an iron ore concentrate grade of 62.0wt%and an iron recovery rate of 88.36%.Compared with that of conventional direct reduction magnetization roasting,the iron recovery rate of weak magnetic separation had greatly improved by 34.33%.The proposed fluidized preoxidation-low-temperature reduction magnetization roasting process can realize the efficient magnetization roasting utilization of low-grade refractory siderite-containing iron ore without wüstite generation and is unlimited by the proportion of siderite and hematite in iron ore. 展开更多
关键词 magnetization roasting fluidization SIDERITE preoxdization low-temperature reduction
下载PDF
Recovery of alumina from circulating fluidized bed combustion Al-rich fly ash using mild hydrochemical process 被引量:16
18
作者 杨权成 马淑花 +1 位作者 郑诗礼 张然 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1187-1195,共9页
To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic r... To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic ratio (molar ratio of Na2O to Al2O3 in the sodium aluminate solution) of 25, a molar ratio of CaO to SiO2 in the fly ash of 1.1, a liquid volume to solid mass ratio of 9, a reaction temperature of 280 ℃, and a residence time of 1 h when treating fly ash with an alumina to silica mass ratio (A/S) of 0.78 and an alumina content of 32.43%. Additionally, the alumina leaching mechanism was explored via structural and chemical analysis, which revealed that after alkaline digestion, the main solid phase containing silica was NaCaHSiO4 with a theoretical A/S of zero. 展开更多
关键词 recovery of alumina fly ash phase transformation circulating fluidized bed combustion (CFBC)
下载PDF
Fluidized-bed chlorination thermodynamics and kinetics of Kenya natural rutile ore 被引量:3
19
作者 牛丽萍 张廷安 +2 位作者 倪培远 吕国志 欧阳全胜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3448-3455,共8页
Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed wer... Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed were studied at 1173-1273 K. Thermodynamic analysis of this system revealed that the equation of producing CO was dominant at high temperatures. Based on the gas-solid multi-phase reaction theory and a two-phase model for the fluidized bed, the mathematical description for the chlorination reaction of rutile was proposed. The reaction parameters and the average concentration of gaseous chlorine in the emulsion phase were estimated. The average concentration of emulsion phase in the range of fluidized bed was calculated as 0.3 mol/m^3. The results showed that the chlorination of natural rutile proceeded principally in the emulsion phase, and the reaction rate was mainly controlled by the surface reaction. 展开更多
关键词 natural rutile THERMODYNAMICS KINETICS gas-solid reaction fluidized bed two-phase model
下载PDF
Preparation of TiCl_4 with multistage series combined fluidized bed 被引量:2
20
作者 袁章福 朱元晴 +2 位作者 席亮 熊绍锋 徐秉声 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期283-288,共6页
In order to solve the agglomeration problem in TiCl4 preparation,a new test in a multistage series combined fluidized bed was studied on a pilot scale.The pilot plant can make full use of titanium slag with a high con... In order to solve the agglomeration problem in TiCl4 preparation,a new test in a multistage series combined fluidized bed was studied on a pilot scale.The pilot plant can make full use of titanium slag with a high content of MgO and CaO as the feedstock.Several experimental parameters such as chlorine flow and reaction temperature were discussed and the morphology and components of reaction product were analyzed.According to the results,the conversion rate of TiO2 is up to 90%.It is found that the combined fluidized bed has good anti-agglomeration ability because the accumulation of MgCl2 and CaCl2 on the surface of unreacted slag was carried out of the reactor. 展开更多
关键词 combined fluidized bed titanium tetrachloride anti-agglomeration MgO CAO MGCL2 CACL2
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部