Compared with other types of breast cancer,triple-negative breast cancer(TNBC)has the characteristics of a high degree of malignancy and poor prognosis.Early diagnosis of TNBC through biological markers and timely dev...Compared with other types of breast cancer,triple-negative breast cancer(TNBC)has the characteristics of a high degree of malignancy and poor prognosis.Early diagnosis of TNBC through biological markers and timely development of effective treatment methods can reduce its mortality.Many Research experiments have confirmed that some specific mi RNA expression profiles in TNBC can used as markers for early diagnosis.However,detecting the expression profiles of multiple groups of miRNAs according to traditional detection methods is complicated and consumes many samples.To address this issue,we developed a method for high-throughput,high-sensitivity quantitative detection of multiple sets of miRNAs(including mi R-16,mi R-21,mi R-92,mi R-199,and mi R-342)specifically expressed in TNBC by rolling circle amplification(RCA)on fluorescence-encoded microspheres.Through the optimization of reaction system conditions,the developed method showed an extensive linear dynamic range and high sensitivity for all five miRNAs with the lowest limit of detection of 2 fmol/L.Meanwhile,this high-throughput detection method also appeared reasonable specificity.Only in the presence of a specific target miRNA,the fluorescence signal on the correspondingly encoded microspheres is significantly increased,while the fluorescence signal on other non-correspondingly encoded microspheres is almost negligible.Furthermore,this process exhibited good recovery and reproducibility in serum.The advantages of this method allow us to more conveniently obtain the expression profiles of multiple groups of TNBC-associated mi RNAs,which is beneficial for the early detection of TNBC.展开更多
A novel ion-imprinted polymer, lead ion-imprinted micro-beads with combination of two functional monomers, was synthesized using the W/O/W polymerization method. Two functional monomers, 1,12-dodecanediol-O,O’-diphen...A novel ion-imprinted polymer, lead ion-imprinted micro-beads with combination of two functional monomers, was synthesized using the W/O/W polymerization method. Two functional monomers, 1,12-dodecanediol-O,O’-diphenyl-phosphonic acid (DDDPA) and 4-vinylpyridine, were used to form a suitable construction with micro-pores fitting the template and recognition sites. The eflects of adsorbent dosage, solution pH and the competitive ions on the adsorption and separation eflciency of lead ions were investigated. The lead ion-imprinted micro-beads were eflcient for lead ions removal from aqueous solution in a broad pH range (4–9), when the adsorbent dosage was above 0.1 g/L. The adsorption process obeyed the pseudo second-order kinetics model and it only took half an hour to reach the equilibrium. The adsorption isotherm of lead ion was described by the Langmuir model (R2 0.99) with a maximum adsorption capacity of 116.9 mg/g. In the presence of competitive ions Co2+ and Cd2+, the lead ion-imprinted micro-beads showed a high selectivity for lead ions. The selectivity coeficient of Pb2+/Cd2+ and Pb2+/Co2+are 99.3 and 114.7, respectively.展开更多
基金financially supported by Hainan Provincial Natural Science Foundation of China(No.822CXTD514)Hainan Province Science and Technology Special Found(No.ZDYF2022SHFZ123)。
文摘Compared with other types of breast cancer,triple-negative breast cancer(TNBC)has the characteristics of a high degree of malignancy and poor prognosis.Early diagnosis of TNBC through biological markers and timely development of effective treatment methods can reduce its mortality.Many Research experiments have confirmed that some specific mi RNA expression profiles in TNBC can used as markers for early diagnosis.However,detecting the expression profiles of multiple groups of miRNAs according to traditional detection methods is complicated and consumes many samples.To address this issue,we developed a method for high-throughput,high-sensitivity quantitative detection of multiple sets of miRNAs(including mi R-16,mi R-21,mi R-92,mi R-199,and mi R-342)specifically expressed in TNBC by rolling circle amplification(RCA)on fluorescence-encoded microspheres.Through the optimization of reaction system conditions,the developed method showed an extensive linear dynamic range and high sensitivity for all five miRNAs with the lowest limit of detection of 2 fmol/L.Meanwhile,this high-throughput detection method also appeared reasonable specificity.Only in the presence of a specific target miRNA,the fluorescence signal on the correspondingly encoded microspheres is significantly increased,while the fluorescence signal on other non-correspondingly encoded microspheres is almost negligible.Furthermore,this process exhibited good recovery and reproducibility in serum.The advantages of this method allow us to more conveniently obtain the expression profiles of multiple groups of TNBC-associated mi RNAs,which is beneficial for the early detection of TNBC.
基金supported by the National Natural Science Foundation of China (No. 41072173)the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period of China (No. 2006BAJ04A07)
文摘A novel ion-imprinted polymer, lead ion-imprinted micro-beads with combination of two functional monomers, was synthesized using the W/O/W polymerization method. Two functional monomers, 1,12-dodecanediol-O,O’-diphenyl-phosphonic acid (DDDPA) and 4-vinylpyridine, were used to form a suitable construction with micro-pores fitting the template and recognition sites. The eflects of adsorbent dosage, solution pH and the competitive ions on the adsorption and separation eflciency of lead ions were investigated. The lead ion-imprinted micro-beads were eflcient for lead ions removal from aqueous solution in a broad pH range (4–9), when the adsorbent dosage was above 0.1 g/L. The adsorption process obeyed the pseudo second-order kinetics model and it only took half an hour to reach the equilibrium. The adsorption isotherm of lead ion was described by the Langmuir model (R2 0.99) with a maximum adsorption capacity of 116.9 mg/g. In the presence of competitive ions Co2+ and Cd2+, the lead ion-imprinted micro-beads showed a high selectivity for lead ions. The selectivity coeficient of Pb2+/Cd2+ and Pb2+/Co2+are 99.3 and 114.7, respectively.