Transparent conducting oxide of fluorine-doped tin oxide(FTO) thin films was deposited from chemical solutions of tin chloride and ammonium fluoride using streaming process for electroless and electrochemical deposi...Transparent conducting oxide of fluorine-doped tin oxide(FTO) thin films was deposited from chemical solutions of tin chloride and ammonium fluoride using streaming process for electroless and electrochemical deposition(SPEED) at substrate temperature 450, 500, and 530 ℃ respectively. The effect of substrate temperatures on the microstructural properties such as crystallite size, dislocation density, micro strain, volume of the unit cell,volume of the nanoparticles, number of the unit cell, bond length and the lattice constants were examined using XRD technique. Only reflections from(110) and(200) planes of tetragonal SnO_2 crystal structure were obvious.The peaks are relatively weak indicating that the deposited materials constitute grains in the nano dimension. Hall measurements, which were done using van der Pauw technique, showed that the FTO films are n-type semiconductors. The most favorable electrical values were achieved for the film grown at 530 ℃ with low resistivity of 7.64×10^(-4)Ω·cm and Hall mobility of –9.92 cm^2/(V·s).展开更多
An effective method based on laser etching and driving layer strategy was proposed to prepare patterned Ag nanoparticles(Ag NPs)on fluorine-doped tin oxide(FTO)/glass substrate and thus to enhance the photoelectric pr...An effective method based on laser etching and driving layer strategy was proposed to prepare patterned Ag nanoparticles(Ag NPs)on fluorine-doped tin oxide(FTO)/glass substrate and thus to enhance the photoelectric properties.This method successively included depositing an aluminum-doped zinc oxide(AZO)driving layer,laser etching,depositing an Ag layer,furnace annealing and laser removal.Different AZO and Ag layer thicknesses were adopted,and the surface morphology,crystal structure and photoelectric properties were investigated.An Ag NPs/FTO/glass sample without an AZO driving layer was prepared for comparison.It was found that furnace annealing of the Ag layer combined with the AZO driving layer,rather than that without the AZO driving layer,was more conducive to generating patterned Ag NPs.Using a 20-nmthick AZO layer and a 150-nm-thick Ag layer led to the formation of uniformly distributed Ag NPs being aligned along the laser-etched grooves to form a pattern.The as-obtained sample had the best comprehensive photoelectric property with an average transmittance of 79.95%,a sheet resistance of 7.11Ω/sq and the highest figure of merit of 1.50×10^(-2)Ω^(-1),confirming the feasibility of the proposed method and providing enlightenment for related researches of transparent conductive oxide-based films.展开更多
The multiwalled carbon nanotubes thin-film-based electrode was fabricated by electrophoretic deposition and modified with copper (Cu) nanoparticles to fabricate Cu/CNTs nanocomposite sensor for nonenzymatic glucose ...The multiwalled carbon nanotubes thin-film-based electrode was fabricated by electrophoretic deposition and modified with copper (Cu) nanoparticles to fabricate Cu/CNTs nanocomposite sensor for nonenzymatic glucose detection. The expensive glassy carbon electrode was replaced by fluorine-doped tin oxide glass containing CNTs film to confine the Cu nanoparticles growth by electrodeposition through cyclic voltammetry (CV). The ultraviolet visible and X-ray diffraction analysis revealed the successful deposition of Cu nanoparticles on the CNTs-modified electrode. The atomic force microscopy images confirrqed the morphology of electrodeposited Cu on CNTs film as uniformly dispersed particles. The electrocatalytic activity of electrode to the glucose oxidation was investigated in alkaline medium by CV and amperometric measurements. The fabricated sensor exhibited a fast response time of less than 5 s and the sensitivity of 314 μA rnM^-1 cm^-2 with linear concentration range (0.02-3.0 mM) having detection limit 10.0 μM. Due to simple preparation of sensor, Cu/CNTs nanocomposite electrodes are a suitable candidate for reliable determination of glucose with good stability.展开更多
文摘Transparent conducting oxide of fluorine-doped tin oxide(FTO) thin films was deposited from chemical solutions of tin chloride and ammonium fluoride using streaming process for electroless and electrochemical deposition(SPEED) at substrate temperature 450, 500, and 530 ℃ respectively. The effect of substrate temperatures on the microstructural properties such as crystallite size, dislocation density, micro strain, volume of the unit cell,volume of the nanoparticles, number of the unit cell, bond length and the lattice constants were examined using XRD technique. Only reflections from(110) and(200) planes of tetragonal SnO_2 crystal structure were obvious.The peaks are relatively weak indicating that the deposited materials constitute grains in the nano dimension. Hall measurements, which were done using van der Pauw technique, showed that the FTO films are n-type semiconductors. The most favorable electrical values were achieved for the film grown at 530 ℃ with low resistivity of 7.64×10^(-4)Ω·cm and Hall mobility of –9.92 cm^2/(V·s).
基金supported by the National Natural Science Foundation of China(Nos.51805220 and 61405078)the Jiangsu University Study-abroad Fund(No.UJS-2017-013)support of the Young Backbone Teacher Cultivating Project of Jiangsu University(No.5521220008)。
文摘An effective method based on laser etching and driving layer strategy was proposed to prepare patterned Ag nanoparticles(Ag NPs)on fluorine-doped tin oxide(FTO)/glass substrate and thus to enhance the photoelectric properties.This method successively included depositing an aluminum-doped zinc oxide(AZO)driving layer,laser etching,depositing an Ag layer,furnace annealing and laser removal.Different AZO and Ag layer thicknesses were adopted,and the surface morphology,crystal structure and photoelectric properties were investigated.An Ag NPs/FTO/glass sample without an AZO driving layer was prepared for comparison.It was found that furnace annealing of the Ag layer combined with the AZO driving layer,rather than that without the AZO driving layer,was more conducive to generating patterned Ag NPs.Using a 20-nmthick AZO layer and a 150-nm-thick Ag layer led to the formation of uniformly distributed Ag NPs being aligned along the laser-etched grooves to form a pattern.The as-obtained sample had the best comprehensive photoelectric property with an average transmittance of 79.95%,a sheet resistance of 7.11Ω/sq and the highest figure of merit of 1.50×10^(-2)Ω^(-1),confirming the feasibility of the proposed method and providing enlightenment for related researches of transparent conductive oxide-based films.
基金supported by the University of Engineering and Technology, Lahore, Pakistan
文摘The multiwalled carbon nanotubes thin-film-based electrode was fabricated by electrophoretic deposition and modified with copper (Cu) nanoparticles to fabricate Cu/CNTs nanocomposite sensor for nonenzymatic glucose detection. The expensive glassy carbon electrode was replaced by fluorine-doped tin oxide glass containing CNTs film to confine the Cu nanoparticles growth by electrodeposition through cyclic voltammetry (CV). The ultraviolet visible and X-ray diffraction analysis revealed the successful deposition of Cu nanoparticles on the CNTs-modified electrode. The atomic force microscopy images confirrqed the morphology of electrodeposited Cu on CNTs film as uniformly dispersed particles. The electrocatalytic activity of electrode to the glucose oxidation was investigated in alkaline medium by CV and amperometric measurements. The fabricated sensor exhibited a fast response time of less than 5 s and the sensitivity of 314 μA rnM^-1 cm^-2 with linear concentration range (0.02-3.0 mM) having detection limit 10.0 μM. Due to simple preparation of sensor, Cu/CNTs nanocomposite electrodes are a suitable candidate for reliable determination of glucose with good stability.