期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Substrate temperature effect on the photophysical and microstructural properties of fluorine-doped tin oxide nanoparticles
1
作者 Ibiyemi Abideen Yusuf Gbadebo Faremi Abass 《Journal of Semiconductors》 EI CAS CSCD 2017年第7期31-35,共5页
Transparent conducting oxide of fluorine-doped tin oxide(FTO) thin films was deposited from chemical solutions of tin chloride and ammonium fluoride using streaming process for electroless and electrochemical deposi... Transparent conducting oxide of fluorine-doped tin oxide(FTO) thin films was deposited from chemical solutions of tin chloride and ammonium fluoride using streaming process for electroless and electrochemical deposition(SPEED) at substrate temperature 450, 500, and 530 ℃ respectively. The effect of substrate temperatures on the microstructural properties such as crystallite size, dislocation density, micro strain, volume of the unit cell,volume of the nanoparticles, number of the unit cell, bond length and the lattice constants were examined using XRD technique. Only reflections from(110) and(200) planes of tetragonal SnO_2 crystal structure were obvious.The peaks are relatively weak indicating that the deposited materials constitute grains in the nano dimension. Hall measurements, which were done using van der Pauw technique, showed that the FTO films are n-type semiconductors. The most favorable electrical values were achieved for the film grown at 530 ℃ with low resistivity of 7.64×10^(-4)Ω·cm and Hall mobility of –9.92 cm^2/(V·s). 展开更多
关键词 fto SPEED tin oxide substrate temperature fluorine
原文传递
Preparation and Photoelectric Properties of Patterned Ag Nanoparticles on FTO/Glass Substrate by Laser Etching and Driving Layer Strategy
2
作者 Li-Jing Huang Gao-Ming Zhang +4 位作者 Yao Zhang Bao-Jia Li Nai-Fei Ren Lei Zhao Yi-Lun Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第7期973-985,共13页
An effective method based on laser etching and driving layer strategy was proposed to prepare patterned Ag nanoparticles(Ag NPs)on fluorine-doped tin oxide(FTO)/glass substrate and thus to enhance the photoelectric pr... An effective method based on laser etching and driving layer strategy was proposed to prepare patterned Ag nanoparticles(Ag NPs)on fluorine-doped tin oxide(FTO)/glass substrate and thus to enhance the photoelectric properties.This method successively included depositing an aluminum-doped zinc oxide(AZO)driving layer,laser etching,depositing an Ag layer,furnace annealing and laser removal.Different AZO and Ag layer thicknesses were adopted,and the surface morphology,crystal structure and photoelectric properties were investigated.An Ag NPs/FTO/glass sample without an AZO driving layer was prepared for comparison.It was found that furnace annealing of the Ag layer combined with the AZO driving layer,rather than that without the AZO driving layer,was more conducive to generating patterned Ag NPs.Using a 20-nmthick AZO layer and a 150-nm-thick Ag layer led to the formation of uniformly distributed Ag NPs being aligned along the laser-etched grooves to form a pattern.The as-obtained sample had the best comprehensive photoelectric property with an average transmittance of 79.95%,a sheet resistance of 7.11Ω/sq and the highest figure of merit of 1.50×10^(-2)Ω^(-1),confirming the feasibility of the proposed method and providing enlightenment for related researches of transparent conductive oxide-based films. 展开更多
关键词 Ag nanoparticle fluorine-doped tin oxide(fto) Photoelectric property Laser etching Driving layer
原文传递
Uniform and Homogeneous Growth of Copper Nanoparticles on Electrophoretically Deposited Carbon Nanotubes Electrode for Nonenzymatic Glucose Sensor 被引量:1
3
作者 Syeda Ammara Shahzadi Shamaila +2 位作者 Rehana Sharif Sheeba Ghani Nosheen Zafar 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第10期889-894,共6页
The multiwalled carbon nanotubes thin-film-based electrode was fabricated by electrophoretic deposition and modified with copper (Cu) nanoparticles to fabricate Cu/CNTs nanocomposite sensor for nonenzymatic glucose ... The multiwalled carbon nanotubes thin-film-based electrode was fabricated by electrophoretic deposition and modified with copper (Cu) nanoparticles to fabricate Cu/CNTs nanocomposite sensor for nonenzymatic glucose detection. The expensive glassy carbon electrode was replaced by fluorine-doped tin oxide glass containing CNTs film to confine the Cu nanoparticles growth by electrodeposition through cyclic voltammetry (CV). The ultraviolet visible and X-ray diffraction analysis revealed the successful deposition of Cu nanoparticles on the CNTs-modified electrode. The atomic force microscopy images confirrqed the morphology of electrodeposited Cu on CNTs film as uniformly dispersed particles. The electrocatalytic activity of electrode to the glucose oxidation was investigated in alkaline medium by CV and amperometric measurements. The fabricated sensor exhibited a fast response time of less than 5 s and the sensitivity of 314 μA rnM^-1 cm^-2 with linear concentration range (0.02-3.0 mM) having detection limit 10.0 μM. Due to simple preparation of sensor, Cu/CNTs nanocomposite electrodes are a suitable candidate for reliable determination of glucose with good stability. 展开更多
关键词 Electrophoretic deposition (EPD) fluorine-doped tin oxide (fto substrate Carbon nanotubes Copper nanoparticles Nonenzymatic electrocatalysis Glucose sensor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部