目的:探讨猫上橄榄复合体各个核团内橄榄耳蜗神经元的分布和形态。方法:将8只成年猫随机分成两组,实验组5只,于左侧耳蜗内注射霍乱毒素B亚单位(cholera toxin B subunit,CTB),右侧耳蜗注射荧光金(fluoro-gold,FG);对照组3只,于双侧耳蜗...目的:探讨猫上橄榄复合体各个核团内橄榄耳蜗神经元的分布和形态。方法:将8只成年猫随机分成两组,实验组5只,于左侧耳蜗内注射霍乱毒素B亚单位(cholera toxin B subunit,CTB),右侧耳蜗注射荧光金(fluoro-gold,FG);对照组3只,于双侧耳蜗注射生理盐水。取脑干组织切片,经免疫组化ABC方法和DAB显色后观察被标记的橄榄耳蜗神经元。结果:实验组猫橄榄耳蜗神经元总数为2518个,其中外侧橄榄耳蜗(lateral olivocochlear,LOC)神经元1738个,占69.0%,主要分布于脑桥中部,以同侧投射占优势。内侧橄榄耳蜗(medial olivocochlear,MOC)神经元780个(31.0%),主要位于背内侧橄榄旁核(dorsomedial periolivary nucleus,DMPO)、内侧斜方体核(medial nucleus of the trapezoid body,MNTB)以及腹侧斜方体核(ventral nucleus of the trapezoid body,VNTB),在脑桥嘴侧分布密集,其发出的纤维以对侧投射占优势。结论:猫的橄榄耳蜗神经元分布LOC神经元向同侧投射为主;而MOC神经元则为对侧投射优势,且MOC神经元分布较LOC神经元更靠近脑桥嘴侧。展开更多
Fluorescent neuronal tracers should not be toxic to the nervous system when used in long-term labeling. Previous studies have addressed tracer toxicity, but whether tracers injected into an intact nerve result in func...Fluorescent neuronal tracers should not be toxic to the nervous system when used in long-term labeling. Previous studies have addressed tracer toxicity, but whether tracers injected into an intact nerve result in functional impairment remains to be elucidated. In the present study, we examined the functions of motor, sensory and autonomic nerves following the application of 5% Fluoro-Gold, 4% True Blue and 10% Fluoro-Ruby (5 pL) to rat tibial nerves via pressure injection. A set of evaluation methods including walking track analysis, plantar test and laser Doppler perfusion imaging was used to determine the action of the fluorescent neuronal tracers. Additionally, nerve pathology and ratio of muscle wet weight were also observed. Results showed that injection of Fluoro-Gold significantly resulted in loss of motor nerve function, lower plantar sensibility, increasing blood flow volume and higher neurogenic vasodilatation. Myelinated nerve fiber degeneration, unclear boundaries in nerve fibers and high retrograde labeling efficacy were observed in the Fluoro-Gold group. The True Blue group also showed obvious neurogenic vasodilatation, but less severe loss of motor function and degeneration, and fewer labeled motor neurons were found compared with the Fluoro-Gold group. No anomalies of motor and sensory nerve function and no myelinated nerve fiber degeneration were observed in the Fluoro-Ruby group. Experimental findings indicate that Fluoro-Gold tracing could lead to significant functional impairment of motor, sensory and autonomic nerves, while functional impairment was less severe following True Blue tracing. Fluoro-Ruby injection appears to have no effect on neurological function.展开更多
Amyloid-beta(Aβ)-related alterations,similar to those found in the brains of patients with Alzheimer's disease,have been observed in the retina of patients with glaucoma.Decreased levels of brain-derived neurotro...Amyloid-beta(Aβ)-related alterations,similar to those found in the brains of patients with Alzheimer's disease,have been observed in the retina of patients with glaucoma.Decreased levels of brain-derived neurotrophic factor(BDNF)are believed to be associated with the neurotoxic effects of Aβpeptide.To investigate the mechanism underlying the neuroprotective effects of BDNF on Aβ_(1-40)-induced retinal injury in Sprague-Dawley rats,we treated rats by intravitreal administration of phosphate-buffered saline(control),Aβ_(1-40)(5 nM),or Aβ_(1-40)(5 nM)combined with BDNF(1μg/mL).We found that intravitreal administration of Aβ_(1-40)induced retinal ganglion cell apoptosis.Fluoro-Gold staining showed a significantly lower number of retinal ganglion cells in the Aβ_(1-40)group than in the control and BDNF groups.In the Aβ_(1-40)group,low number of RGCs was associated with increased caspase-3 expression and reduced TrkB and ERK1/2 expression.BDNF abolished Aβ_(1-40)-induced increase in the expression of caspase-3 at the gene and protein levels in the retina and upregulated TrkB and ERK1/2 expression.These findings suggest that treatment with BDNF prevents RGC apoptosis induced by Aβ_(1-40)by activating the BDNF-TrkB signaling pathway in rats.展开更多
For rapid and simultaneous detection of (fluoro)quinolones, a broadly specific monoclonal antibody (mAb) that recognizes 32 (fluoro)quinolone antibiotics was prepared using a mixture of a norfloxacin derivative ...For rapid and simultaneous detection of (fluoro)quinolones, a broadly specific monoclonal antibody (mAb) that recognizes 32 (fluoro)quinolone antibiotics was prepared using a mixture of a norfloxacin derivative and a sarfloxacin derivative as the hapten. An immunochromatographic strip based on gold nanoparticles (AuNPs) was then assembled with goat anti-mouse antibody and antigen (sarfloxacin coupled to ovalbumin), used to form the C line and T line, respectively. This antigen competes with the (fluoro)quinolones in a sample incubated with mAbs labeled with AuNPs. The strip can detect 32 (fluoro)quinolones including oxolinic acid, nalidixic acid, miloxacin, pipemidic acid, piromidic acid, rosoxacin, cinoxacin, norfloxacin, pefloxacin, lomfloxacin, enofloxacin, fleroxacin, ciprofloxacin, enrofloxacin, dafloxacin, orbifloxacin, sparfloxacin, gemifloxacin, besifloxacin, balofloxacin, gatifloxacin, moxifloxacin, nadifloxacin, ofloxacin, marbofloxacin, flumequine, pazufloxacin, prulifloxacin, sarafloxacin, difloxacin, trovafloxacin, and tosufloxacin in milk within 10 min with the naked eye. The cut-off values of the strip range from 1 to 100 ng/mL and the limits of detection are 0.1- 10 ng/mL. The strip does not cross-react with antibiotics including tetracycline, sulfamethazine, ampicillin, erythromycin, aflatoxin B1, or gentamicin. In short, this immunochromatographic strip is a very useful tool for the primary screening of (fluoro)quinolones in milk.展开更多
文摘目的:探讨猫上橄榄复合体各个核团内橄榄耳蜗神经元的分布和形态。方法:将8只成年猫随机分成两组,实验组5只,于左侧耳蜗内注射霍乱毒素B亚单位(cholera toxin B subunit,CTB),右侧耳蜗注射荧光金(fluoro-gold,FG);对照组3只,于双侧耳蜗注射生理盐水。取脑干组织切片,经免疫组化ABC方法和DAB显色后观察被标记的橄榄耳蜗神经元。结果:实验组猫橄榄耳蜗神经元总数为2518个,其中外侧橄榄耳蜗(lateral olivocochlear,LOC)神经元1738个,占69.0%,主要分布于脑桥中部,以同侧投射占优势。内侧橄榄耳蜗(medial olivocochlear,MOC)神经元780个(31.0%),主要位于背内侧橄榄旁核(dorsomedial periolivary nucleus,DMPO)、内侧斜方体核(medial nucleus of the trapezoid body,MNTB)以及腹侧斜方体核(ventral nucleus of the trapezoid body,VNTB),在脑桥嘴侧分布密集,其发出的纤维以对侧投射占优势。结论:猫的橄榄耳蜗神经元分布LOC神经元向同侧投射为主;而MOC神经元则为对侧投射优势,且MOC神经元分布较LOC神经元更靠近脑桥嘴侧。
基金financially supported by the National High-Tech Research and Development Program of China(863 Program),No.2012AA020502the National Natural Science Foundation of China,No.81100939 and 81130080+2 种基金the Collegiate Natural Science Foundation of Jiangsu Province,No.10KJB310009the Innovation Program for Collegiate Postgraduates of Jiangsu Province,No.CXZZ12_0872the Qinglan Project of Jiangsu Province
文摘Fluorescent neuronal tracers should not be toxic to the nervous system when used in long-term labeling. Previous studies have addressed tracer toxicity, but whether tracers injected into an intact nerve result in functional impairment remains to be elucidated. In the present study, we examined the functions of motor, sensory and autonomic nerves following the application of 5% Fluoro-Gold, 4% True Blue and 10% Fluoro-Ruby (5 pL) to rat tibial nerves via pressure injection. A set of evaluation methods including walking track analysis, plantar test and laser Doppler perfusion imaging was used to determine the action of the fluorescent neuronal tracers. Additionally, nerve pathology and ratio of muscle wet weight were also observed. Results showed that injection of Fluoro-Gold significantly resulted in loss of motor nerve function, lower plantar sensibility, increasing blood flow volume and higher neurogenic vasodilatation. Myelinated nerve fiber degeneration, unclear boundaries in nerve fibers and high retrograde labeling efficacy were observed in the Fluoro-Gold group. The True Blue group also showed obvious neurogenic vasodilatation, but less severe loss of motor function and degeneration, and fewer labeled motor neurons were found compared with the Fluoro-Gold group. No anomalies of motor and sensory nerve function and no myelinated nerve fiber degeneration were observed in the Fluoro-Ruby group. Experimental findings indicate that Fluoro-Gold tracing could lead to significant functional impairment of motor, sensory and autonomic nerves, while functional impairment was less severe following True Blue tracing. Fluoro-Ruby injection appears to have no effect on neurological function.
基金supported by the Ministry of Higher Education,Government of Malaysia,No.FRGS/2/2014/SG03/UITM/02/2 UiTM IRMI file No.600-RMI/FRGS 5/3(111/2014),toⅡYayasan Penyelidikan Otak,Minda dan Neurosains Malaysia(YPOMNM),No.YPOMNM/2019-04(2)UiTM IRMI No.100-IRMI/PRI 16/6/2(010/2019),to MAML。
文摘Amyloid-beta(Aβ)-related alterations,similar to those found in the brains of patients with Alzheimer's disease,have been observed in the retina of patients with glaucoma.Decreased levels of brain-derived neurotrophic factor(BDNF)are believed to be associated with the neurotoxic effects of Aβpeptide.To investigate the mechanism underlying the neuroprotective effects of BDNF on Aβ_(1-40)-induced retinal injury in Sprague-Dawley rats,we treated rats by intravitreal administration of phosphate-buffered saline(control),Aβ_(1-40)(5 nM),or Aβ_(1-40)(5 nM)combined with BDNF(1μg/mL).We found that intravitreal administration of Aβ_(1-40)induced retinal ganglion cell apoptosis.Fluoro-Gold staining showed a significantly lower number of retinal ganglion cells in the Aβ_(1-40)group than in the control and BDNF groups.In the Aβ_(1-40)group,low number of RGCs was associated with increased caspase-3 expression and reduced TrkB and ERK1/2 expression.BDNF abolished Aβ_(1-40)-induced increase in the expression of caspase-3 at the gene and protein levels in the retina and upregulated TrkB and ERK1/2 expression.These findings suggest that treatment with BDNF prevents RGC apoptosis induced by Aβ_(1-40)by activating the BDNF-TrkB signaling pathway in rats.
基金Acknowledgements This work is financially supported by the National Natural Science Foundation of China (Nos. 21522102,21503095, 21471068, 21371081, and 21301073), the Key Programs from MOST (Nos. 2016YFD0401101 and 2012YQ09019410), and grants from Natural Science Foundation of Jiangsu Province, MOF and MOE (Nos. BK20150145, BX20151038, BK20140003, BE2014672, BE2013613, BE2013611).
文摘For rapid and simultaneous detection of (fluoro)quinolones, a broadly specific monoclonal antibody (mAb) that recognizes 32 (fluoro)quinolone antibiotics was prepared using a mixture of a norfloxacin derivative and a sarfloxacin derivative as the hapten. An immunochromatographic strip based on gold nanoparticles (AuNPs) was then assembled with goat anti-mouse antibody and antigen (sarfloxacin coupled to ovalbumin), used to form the C line and T line, respectively. This antigen competes with the (fluoro)quinolones in a sample incubated with mAbs labeled with AuNPs. The strip can detect 32 (fluoro)quinolones including oxolinic acid, nalidixic acid, miloxacin, pipemidic acid, piromidic acid, rosoxacin, cinoxacin, norfloxacin, pefloxacin, lomfloxacin, enofloxacin, fleroxacin, ciprofloxacin, enrofloxacin, dafloxacin, orbifloxacin, sparfloxacin, gemifloxacin, besifloxacin, balofloxacin, gatifloxacin, moxifloxacin, nadifloxacin, ofloxacin, marbofloxacin, flumequine, pazufloxacin, prulifloxacin, sarafloxacin, difloxacin, trovafloxacin, and tosufloxacin in milk within 10 min with the naked eye. The cut-off values of the strip range from 1 to 100 ng/mL and the limits of detection are 0.1- 10 ng/mL. The strip does not cross-react with antibiotics including tetracycline, sulfamethazine, ampicillin, erythromycin, aflatoxin B1, or gentamicin. In short, this immunochromatographic strip is a very useful tool for the primary screening of (fluoro)quinolones in milk.