The possibilities of MSWI fly ash as a major constituent of novel solidification/stabilization matrices for secure landfill were investigated by mixing MSWI fly ash with rich aluminum components, which was added as ba...The possibilities of MSWI fly ash as a major constituent of novel solidification/stabilization matrices for secure landfill were investigated by mixing MSWI fly ash with rich aluminum components, which was added as bauxite cement or metakaolinite instead, to form Friedel and Ettringite phases with high fixing capacities for heavy metals. The physical properties, heavy metals-fixing capacity, mineral phases and its vibration bands in the novel matrices were characterized by compressive strength, TCLP(toxic characteristic leaching procedure), XRD (x-ray diffraction) , DTG (derivative thermogravimetry), and FTIR (fourier transform infrared spectroscopy), respectively. The Tessier's five-step sequential extraction procedure was used to analyze the fractions of chemical speciation for Pb, Cd and Zn ions. The experimental results indicate that Friedel-Ettringite based novel solidification/stabilization matrices can incorporate Pb, Cd and Zn ions effectively by physical encapsulation and chemical fixation, and it exhibits a great potential in co-landfill treatment of MSWI fly ash with some heavy metals-bearing hazardous wastes.展开更多
Solid waste disposal is an alarming problem in most African countries. Plastic wastes like Polyethylene Terephthalate (PET) bottles and powdered wastes like fly ash are severely persisting environmental hazards. They ...Solid waste disposal is an alarming problem in most African countries. Plastic wastes like Polyethylene Terephthalate (PET) bottles and powdered wastes like fly ash are severely persisting environmental hazards. They are brutally polluting the water bodies, landfills, as well as the atmosphere. The construction industry has been working towards improving concrete quality by developing alternative methods like partial cement replacement with different pozzolanic elements as well as using waste fibrous materials. Fly ash and PET bottle fibres are two common waste materials that can be used. This article is a part of a research that studied the combined effects of the addition of PET bottle fibres and fly ash (as a partial cement replacement) on the structural performance of concrete. From a purely engineering point of view, the research results indicate that the utilization and incorporation of PET and fly ash wastes in the construction industry are a viable solution to make concrete quality better. This article presents, beyond the engineering properties and experimental works, the economic and environmental advantages of the addition of these waste materials to the conventional concrete mixture. The addition of PET bottle fibres and fly ash resulted in positive cost implications providing a production cost reduction of 19% over the conventional concrete mixture. The removal of these materials from the environment also showed reduction of the emission of toxic elements to landfills and water bodies that put human, animal and plant lives in danger.展开更多
Selenium (Se) contamination can be a potential groundwater concern near un-lined coal ash landfills. Of all the Environmental Protection Agency’s priority and non-priority pollutants, Se has the narrowest concentrati...Selenium (Se) contamination can be a potential groundwater concern near un-lined coal ash landfills. Of all the Environmental Protection Agency’s priority and non-priority pollutants, Se has the narrowest concentration range considered beneficial and detrimental for aquatic and terrestrial organisms. The effects of ash type (i.e., fresh and weathered), water-extractant type (i.e., deionized water, rainwater, and groundwater), and extraction time (i.e., 2 and 6 hours) on Se, arsenic (As), and chromium (Cr) concentrations were investigated from Class C, subbituminous coal fly ash produced at the Flint Creek Power Plant (Benton County, AR). Water-extractable Se concentrations differed (p = 0.03) between ash types across water-extractants, but were unaffected (p > 0.05) by extraction times. Unexpectedly, fresh ash water-extractable Se concentrations were below minimum detection limits (i.e., 2.0 μg·L-1) for all treatments. In contrast, averaged over extraction times, the water-extractable Se concentration from weathered ash was greatest (p < 0.05) with groundwater and rainwater, which did not differ and averaged 60.0 μg·L-1, compared to extraction with deionized water (57.6 μg·L-1). Selenite SeO32- was greater (p ·L-1) than in the weathered ash (0.70 mg·kg-1), while selenate SeO42- concentration was greater (p < 0.001) in the weathered (0.67 mg·kg-1) than in fresh ash (0.48 mg·kg-1). Results from this study indicate that environmental weathering of Class C, subbituminous fly ash promotes oxidation of selenite, to the less toxic, but highly mobile selenate. The formation of hydrated ettringite [Ca6Al2(SO4)3(OH)12·26H2O] and calcium selenite (CaSeO3) likely acted as a sink for weathered ash selenite. Implications of this research include a better understanding of the past, present, and future environmental and health risk potential associated with the release of watersoluble Se, As, and Cr to aid in the development of sustainable fly ash management strategies.展开更多
基金Funded by the National Natural Science Foundation of China(No.20477024)2003 Shanghai Education Research Fund
文摘The possibilities of MSWI fly ash as a major constituent of novel solidification/stabilization matrices for secure landfill were investigated by mixing MSWI fly ash with rich aluminum components, which was added as bauxite cement or metakaolinite instead, to form Friedel and Ettringite phases with high fixing capacities for heavy metals. The physical properties, heavy metals-fixing capacity, mineral phases and its vibration bands in the novel matrices were characterized by compressive strength, TCLP(toxic characteristic leaching procedure), XRD (x-ray diffraction) , DTG (derivative thermogravimetry), and FTIR (fourier transform infrared spectroscopy), respectively. The Tessier's five-step sequential extraction procedure was used to analyze the fractions of chemical speciation for Pb, Cd and Zn ions. The experimental results indicate that Friedel-Ettringite based novel solidification/stabilization matrices can incorporate Pb, Cd and Zn ions effectively by physical encapsulation and chemical fixation, and it exhibits a great potential in co-landfill treatment of MSWI fly ash with some heavy metals-bearing hazardous wastes.
文摘Solid waste disposal is an alarming problem in most African countries. Plastic wastes like Polyethylene Terephthalate (PET) bottles and powdered wastes like fly ash are severely persisting environmental hazards. They are brutally polluting the water bodies, landfills, as well as the atmosphere. The construction industry has been working towards improving concrete quality by developing alternative methods like partial cement replacement with different pozzolanic elements as well as using waste fibrous materials. Fly ash and PET bottle fibres are two common waste materials that can be used. This article is a part of a research that studied the combined effects of the addition of PET bottle fibres and fly ash (as a partial cement replacement) on the structural performance of concrete. From a purely engineering point of view, the research results indicate that the utilization and incorporation of PET and fly ash wastes in the construction industry are a viable solution to make concrete quality better. This article presents, beyond the engineering properties and experimental works, the economic and environmental advantages of the addition of these waste materials to the conventional concrete mixture. The addition of PET bottle fibres and fly ash resulted in positive cost implications providing a production cost reduction of 19% over the conventional concrete mixture. The removal of these materials from the environment also showed reduction of the emission of toxic elements to landfills and water bodies that put human, animal and plant lives in danger.
文摘Selenium (Se) contamination can be a potential groundwater concern near un-lined coal ash landfills. Of all the Environmental Protection Agency’s priority and non-priority pollutants, Se has the narrowest concentration range considered beneficial and detrimental for aquatic and terrestrial organisms. The effects of ash type (i.e., fresh and weathered), water-extractant type (i.e., deionized water, rainwater, and groundwater), and extraction time (i.e., 2 and 6 hours) on Se, arsenic (As), and chromium (Cr) concentrations were investigated from Class C, subbituminous coal fly ash produced at the Flint Creek Power Plant (Benton County, AR). Water-extractable Se concentrations differed (p = 0.03) between ash types across water-extractants, but were unaffected (p > 0.05) by extraction times. Unexpectedly, fresh ash water-extractable Se concentrations were below minimum detection limits (i.e., 2.0 μg·L-1) for all treatments. In contrast, averaged over extraction times, the water-extractable Se concentration from weathered ash was greatest (p < 0.05) with groundwater and rainwater, which did not differ and averaged 60.0 μg·L-1, compared to extraction with deionized water (57.6 μg·L-1). Selenite SeO32- was greater (p ·L-1) than in the weathered ash (0.70 mg·kg-1), while selenate SeO42- concentration was greater (p < 0.001) in the weathered (0.67 mg·kg-1) than in fresh ash (0.48 mg·kg-1). Results from this study indicate that environmental weathering of Class C, subbituminous fly ash promotes oxidation of selenite, to the less toxic, but highly mobile selenate. The formation of hydrated ettringite [Ca6Al2(SO4)3(OH)12·26H2O] and calcium selenite (CaSeO3) likely acted as a sink for weathered ash selenite. Implications of this research include a better understanding of the past, present, and future environmental and health risk potential associated with the release of watersoluble Se, As, and Cr to aid in the development of sustainable fly ash management strategies.