利用2008年NCEP FNL全球分析资料,研究了环渤海地区低空急流的时空特征,并与探空资料结果进行对比。结果表明:环渤海地区低空急流的日变化特征明显,18时(世界时)达到最大;季节变化非常明显,春季出现的次数最多;它的风速范围为12-14 m...利用2008年NCEP FNL全球分析资料,研究了环渤海地区低空急流的时空特征,并与探空资料结果进行对比。结果表明:环渤海地区低空急流的日变化特征明显,18时(世界时)达到最大;季节变化非常明显,春季出现的次数最多;它的风速范围为12-14 m/s,风向以SW为主,主要出现在925 h Pa上;环渤海地区低空急流在西北部以高层(700和850 h Pa)为主,在东北部和南部以低层(925 h Pa)为主;在700 h Pa上,各时次出现低空急流的个数差异不大,在850 h Pa上出现低空急流最多的时次主要是12时,在925 h Pa和1 000 h Pa上出现低空急流最多的时次是18时;由高层到低层,低空急流的中心由西北部逐渐向东北部移动,低空急流的强度在春季逐渐增强,在秋冬季逐渐减弱。NCEP FNL分析资料能够捕捉到更多的低空急流。展开更多
使用云水资源监测评估方法(CWR-MEM)和NCEP/NCAR的FNL再分析数据,对2018~2020年海南空中水资源的分布特征和变化趋势进行研究,分析水汽、水凝物和云水资源的状况,估算云水资源人工增雨潜力。结果表明:1. 海南的年均降水量为1783.7 mm,...使用云水资源监测评估方法(CWR-MEM)和NCEP/NCAR的FNL再分析数据,对2018~2020年海南空中水资源的分布特征和变化趋势进行研究,分析水汽、水凝物和云水资源的状况,估算云水资源人工增雨潜力。结果表明:1. 海南的年均降水量为1783.7 mm,年均水汽总量22651.0亿吨,年均水凝物总量639.5亿吨,年均云水资源总量31.4亿吨;2. 从各边界净输入的年均水汽总量为−219.0亿吨,年均水凝物总量为−1.3亿吨,水汽和水凝物都从岛内区域向外流出;3. 海南不同区域中,北部和中部水凝物总量较大,中部云系有较高的降水效率,云水资源总量也最为丰富;西部区域水凝物总量为各部区域中最少,降水效率也最低,都有很大一部分云水资源可供开发利用;4. 海南岛水汽分布是北部的水汽总量最多,西部的水汽总量最少,西部少、四周多;5. 水凝物的分布与降水相类似,北部、中部和南部的水凝物总量较为丰富,西部的水凝物总量最小;6. 水凝物明显小于水汽1至2个数量级,且空间分布不均匀;7. 水汽主要位于海南岛的沿海地区,最小值在西部;而水凝物的最大值位于中北部或中南部,依次往本岛四周减少。The distribution characteristics and variation trends of atmospheric water resource are studied in Hainan from 2018 to 2020, employing the Cloud Water Resource Monitoring and Evaluation Method (CWR-MEM) along with NCEP/NCAR FNL reanalysis data. The status of water vapor, hydrometeors, and cloud water resource is analyzed. And the artificial rainfall enhancement potential from cloud water resource is estimated. The results show that: 1. The annual average precipitation in Hainan is 1783.7 mm, the annual average total amount of atmospheric water vapor is 2265.10 billion tons, the annual average total amount of atmospheric hydrometeors is 63.95 billion tons, and the annual average total amount of cloud water resource is 3.14 billion tons. 2. The annual average total amount of atmospheric water vapor input from each boundary is −21.90 billion tons, and the annual average total amount of atmospheric hydrometeors is −0.13 billion tons. Both atmospheric water vapor and atmospheric hydrometeors flow out from the island area. 3. In different regions of Hainan, the total amount of atmospheric hydrometeors in the northern and central regions are relatively large, and the central cloud system has a higher precipitation efficiency, and the total amount of cloud water resource is also the most abundant;The total amount of atmospheric hydrometeors in the western region is the lowest among all regions, and the precipitation efficiency is also the lowest. A large portion of cloud water resources is available for development and utilization. 4. The distribution of atmospheric water vapor in Hainan Island is the highest in the north, the lowest in the west, and less in the west and more around. 5. The distribution of atmospheric hydrometeors is similar to precipitation, with the total amount of atmospheric hydrometeors being relatively abundant in the northern, central, and southern regions, while the total amount of atmospheric hydrometeors in the western region is the smallest. 6. Atmospheric hydrometeors are significantly smaller than atmospheric water vapor by about 1 - 2 orders of magnitude, and their spatial distribution is uneven. 7. Atmospheric water vapor is mainly located in the coastal areas of Hainan Island, with the minimum value in the west. The maximum value of atmospheric hydrometeors is in the central north or central south, and gradually decreases around the island.展开更多
利用FNL全球再分析资料(Final Operational Global Analysis)、探空资料对2019年6—9月位于中国华北地区20个站点共5种型号(CFL-06、GLC-24、TWP8-L、CFL-03、CLC-11-D)的边界层风廓线雷达资料进行了质量评估。结果表明:各型号雷达均具...利用FNL全球再分析资料(Final Operational Global Analysis)、探空资料对2019年6—9月位于中国华北地区20个站点共5种型号(CFL-06、GLC-24、TWP8-L、CFL-03、CLC-11-D)的边界层风廓线雷达资料进行了质量评估。结果表明:各型号雷达均具有较强的探测能力,但不同雷达在水平风资料数据获取率以及有效探测高度上差异极大。不区分天气状况时,所有型号雷达均为V风质量优于U风质量。TWP8-L雷达U风测风质量相对最佳,CFL-03雷达紧随其后,GLC-24雷达U风测风质量最差,V风质量则差异不大,U风数据使用前需进行偏差订正以及质量控制。风廓线雷达观测对于降水较为敏感,降水使各型号雷达数据获取率在底层减小,中高层增加,增幅最大达到53%,但探测能力加强并不代表测风质量增加,统计结果表明降水是造成U风平均误差以及均方根误差较高的重要原因,其中,GLC-24、CLC-11-D雷达对降水最为敏感,降水状态相较于非降水状态均方根误差增幅均达到了5.5 m/s以上,降水情况下的U风及V风资料需进行进一步质量控制才可使用。展开更多
文摘利用2008年NCEP FNL全球分析资料,研究了环渤海地区低空急流的时空特征,并与探空资料结果进行对比。结果表明:环渤海地区低空急流的日变化特征明显,18时(世界时)达到最大;季节变化非常明显,春季出现的次数最多;它的风速范围为12-14 m/s,风向以SW为主,主要出现在925 h Pa上;环渤海地区低空急流在西北部以高层(700和850 h Pa)为主,在东北部和南部以低层(925 h Pa)为主;在700 h Pa上,各时次出现低空急流的个数差异不大,在850 h Pa上出现低空急流最多的时次主要是12时,在925 h Pa和1 000 h Pa上出现低空急流最多的时次是18时;由高层到低层,低空急流的中心由西北部逐渐向东北部移动,低空急流的强度在春季逐渐增强,在秋冬季逐渐减弱。NCEP FNL分析资料能够捕捉到更多的低空急流。
文摘使用云水资源监测评估方法(CWR-MEM)和NCEP/NCAR的FNL再分析数据,对2018~2020年海南空中水资源的分布特征和变化趋势进行研究,分析水汽、水凝物和云水资源的状况,估算云水资源人工增雨潜力。结果表明:1. 海南的年均降水量为1783.7 mm,年均水汽总量22651.0亿吨,年均水凝物总量639.5亿吨,年均云水资源总量31.4亿吨;2. 从各边界净输入的年均水汽总量为−219.0亿吨,年均水凝物总量为−1.3亿吨,水汽和水凝物都从岛内区域向外流出;3. 海南不同区域中,北部和中部水凝物总量较大,中部云系有较高的降水效率,云水资源总量也最为丰富;西部区域水凝物总量为各部区域中最少,降水效率也最低,都有很大一部分云水资源可供开发利用;4. 海南岛水汽分布是北部的水汽总量最多,西部的水汽总量最少,西部少、四周多;5. 水凝物的分布与降水相类似,北部、中部和南部的水凝物总量较为丰富,西部的水凝物总量最小;6. 水凝物明显小于水汽1至2个数量级,且空间分布不均匀;7. 水汽主要位于海南岛的沿海地区,最小值在西部;而水凝物的最大值位于中北部或中南部,依次往本岛四周减少。The distribution characteristics and variation trends of atmospheric water resource are studied in Hainan from 2018 to 2020, employing the Cloud Water Resource Monitoring and Evaluation Method (CWR-MEM) along with NCEP/NCAR FNL reanalysis data. The status of water vapor, hydrometeors, and cloud water resource is analyzed. And the artificial rainfall enhancement potential from cloud water resource is estimated. The results show that: 1. The annual average precipitation in Hainan is 1783.7 mm, the annual average total amount of atmospheric water vapor is 2265.10 billion tons, the annual average total amount of atmospheric hydrometeors is 63.95 billion tons, and the annual average total amount of cloud water resource is 3.14 billion tons. 2. The annual average total amount of atmospheric water vapor input from each boundary is −21.90 billion tons, and the annual average total amount of atmospheric hydrometeors is −0.13 billion tons. Both atmospheric water vapor and atmospheric hydrometeors flow out from the island area. 3. In different regions of Hainan, the total amount of atmospheric hydrometeors in the northern and central regions are relatively large, and the central cloud system has a higher precipitation efficiency, and the total amount of cloud water resource is also the most abundant;The total amount of atmospheric hydrometeors in the western region is the lowest among all regions, and the precipitation efficiency is also the lowest. A large portion of cloud water resources is available for development and utilization. 4. The distribution of atmospheric water vapor in Hainan Island is the highest in the north, the lowest in the west, and less in the west and more around. 5. The distribution of atmospheric hydrometeors is similar to precipitation, with the total amount of atmospheric hydrometeors being relatively abundant in the northern, central, and southern regions, while the total amount of atmospheric hydrometeors in the western region is the smallest. 6. Atmospheric hydrometeors are significantly smaller than atmospheric water vapor by about 1 - 2 orders of magnitude, and their spatial distribution is uneven. 7. Atmospheric water vapor is mainly located in the coastal areas of Hainan Island, with the minimum value in the west. The maximum value of atmospheric hydrometeors is in the central north or central south, and gradually decreases around the island.
文摘利用FNL全球再分析资料(Final Operational Global Analysis)、探空资料对2019年6—9月位于中国华北地区20个站点共5种型号(CFL-06、GLC-24、TWP8-L、CFL-03、CLC-11-D)的边界层风廓线雷达资料进行了质量评估。结果表明:各型号雷达均具有较强的探测能力,但不同雷达在水平风资料数据获取率以及有效探测高度上差异极大。不区分天气状况时,所有型号雷达均为V风质量优于U风质量。TWP8-L雷达U风测风质量相对最佳,CFL-03雷达紧随其后,GLC-24雷达U风测风质量最差,V风质量则差异不大,U风数据使用前需进行偏差订正以及质量控制。风廓线雷达观测对于降水较为敏感,降水使各型号雷达数据获取率在底层减小,中高层增加,增幅最大达到53%,但探测能力加强并不代表测风质量增加,统计结果表明降水是造成U风平均误差以及均方根误差较高的重要原因,其中,GLC-24、CLC-11-D雷达对降水最为敏感,降水状态相较于非降水状态均方根误差增幅均达到了5.5 m/s以上,降水情况下的U风及V风资料需进行进一步质量控制才可使用。