Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.T...Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams.展开更多
Foam drainage is theflow of liquid through the interstitial spaces between bubbles driven by capillarity and grav-ity and resisted by viscous damping.The so-called foam drainage gas recovery technology is a technique ...Foam drainage is theflow of liquid through the interstitial spaces between bubbles driven by capillarity and grav-ity and resisted by viscous damping.The so-called foam drainage gas recovery technology is a technique tradi-tionally used to mitigate the serious bottom-hole liquid loading in the middle and late stages of gas well production.In this context,determining the optimal concentration of the bubble drainage agent is generally cru-cial for the proper application of this method.In this study,a combination of indoor experiments and theoretical analysis have been used to determine the pressure drop related to the foam-carrying capacity in a representative gasfield.Dynamic and static experiments were designed with a bubble drainage agent concentration varying in the range 0.3%–0.6%.Using thefield formation water data,the optimal soaking agent concentration was obtained and pressure drop test experiments on the foam carrying capacity were conducted accordingly.These tests have revealed that the optimal foam displacement agent concentration is 0.5%,and the foam quality at the optimum concentration is between 0.78–0.98.A theoretical method for calculating the pressure drop at the optimum soak-away concentration based on experimental data has also been introduced.The error of the proposed method is within 15%compared to the experimental measured value,demonstrating that it is highly accurate and simple.展开更多
Lauryl betaine(LB)as an amphoteric surfactant carries both positive and negative charges and should be able to generate stable foam through electrostatic interaction with nanoparticles and co-surfactants.However,no pr...Lauryl betaine(LB)as an amphoteric surfactant carries both positive and negative charges and should be able to generate stable foam through electrostatic interaction with nanoparticles and co-surfactants.However,no previous attempts have been made to investigate the influence of nanoparticles and other co-surfactants on the stability and apparent viscosity of LBstabilized foam.In this study,a thorough investigation on the influence of silicon dioxide(SiO2)nanoparticles,alpha olefin sulfonate(AOS)and sodium dodecyl sulfate(SDS),on foam stability and apparent viscosity was carried out.The experiments were conducted with the 2D Hele-Shaw cell at high foam qualities(80%-98%).Influence of AOS on the interaction between the LB foam and oil was also investigated.Results showed that the SiO2-LB foam apparent viscosity decreased with increasing surfactant concentration from 0.1 wt%to 0.3 wt%.0.1 wt%SiO2 was the optimum concentration and increased the 0.1 wt%LB foam stability by 108.65%at 96%foam quality.In the presence of co-surfactants,the most stable foam,with the highest apparent viscosity,was generated by AOS/LB solution at a ratio of 9:1.The emulsified crude oil did not imbibe into AOS-LB foam lamellae.Instead,oil was redirected into the plateau borders where the accumulated oil drops delayed the rate of film thinning,bubble coalescence and coarsening.展开更多
In the present study,a novel approach based on an evolutionary wavelet neural network(EWNN)is proposed to estimate the slag quality in an electric arc furnace(EAF)employing power quality indices.In the EWNN,an evoluti...In the present study,a novel approach based on an evolutionary wavelet neural network(EWNN)is proposed to estimate the slag quality in an electric arc furnace(EAF)employing power quality indices.In the EWNN,an evolutionary method is applied to train the parameters for a combination of neural networks and wavelets.I For this purpose,all of the electrical parameters for six melting processes are measured with a power quality analyzer,attached to the secondary component of an EAF transformer at a Saba steel complex,to estimate the foaming slag quality.Experimental results on various combinations of measured electrical parameters,applying the designed EWNN estimator,demonstrate that utilizing five leading indicators leads to the highest precision.The obtained 99%accuracy for estimating the foaming slag quality by EWNN compared to the other methods illustrates the proposed method's efficiency.展开更多
This paper presents the rheological behaviour of supercritical CO2 (sCO2) foam at reser- voir conditions of I 500 psi and 80 ℃. Different commercial surfactants were screened and utilized in or- der to generate a f...This paper presents the rheological behaviour of supercritical CO2 (sCO2) foam at reser- voir conditions of I 500 psi and 80 ℃. Different commercial surfactants were screened and utilized in or- der to generate a fairly stable CO2 foam. Mixed surfactant system was also introduced to generate strong foam. Foam rheology was studied for some specific foam qualities using a high pressure high tempera- ture (HPHT) foam loop rheometer. A typical shear thinning behaviour of the foam was observed and a significant increase in the foam viscosity was noticed with the increase of foam quality until 85%. A de- sired high apparent viscosity with coarse texture was found at 85% foam quality. Foam visualization above 85% showed an unstable foam due to extremely thin lamella which collapsed and totally disap- peared in the loop rheometer. Below 52%, a non-homogenous and unstable foam was found having low viscosity with some liquid accumulation at the bottom of the circulation loop. This research has demon- strated rheology of sCO2 foams at different qualities at HPHT to obtain optimal foam quality region for immiscible CO2 foam co-injection process.展开更多
基金financially supported by National Natural Science Foundation of China(No.U20B6003).
文摘Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams.
基金support provided by the National Natural Science Foundation of China(No.62173049)the Open Fund of the Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University),Ministry of Education(Grant K2021-17).
文摘Foam drainage is theflow of liquid through the interstitial spaces between bubbles driven by capillarity and grav-ity and resisted by viscous damping.The so-called foam drainage gas recovery technology is a technique tradi-tionally used to mitigate the serious bottom-hole liquid loading in the middle and late stages of gas well production.In this context,determining the optimal concentration of the bubble drainage agent is generally cru-cial for the proper application of this method.In this study,a combination of indoor experiments and theoretical analysis have been used to determine the pressure drop related to the foam-carrying capacity in a representative gasfield.Dynamic and static experiments were designed with a bubble drainage agent concentration varying in the range 0.3%–0.6%.Using thefield formation water data,the optimal soaking agent concentration was obtained and pressure drop test experiments on the foam carrying capacity were conducted accordingly.These tests have revealed that the optimal foam displacement agent concentration is 0.5%,and the foam quality at the optimum concentration is between 0.78–0.98.A theoretical method for calculating the pressure drop at the optimum soak-away concentration based on experimental data has also been introduced.The error of the proposed method is within 15%compared to the experimental measured value,demonstrating that it is highly accurate and simple.
文摘Lauryl betaine(LB)as an amphoteric surfactant carries both positive and negative charges and should be able to generate stable foam through electrostatic interaction with nanoparticles and co-surfactants.However,no previous attempts have been made to investigate the influence of nanoparticles and other co-surfactants on the stability and apparent viscosity of LBstabilized foam.In this study,a thorough investigation on the influence of silicon dioxide(SiO2)nanoparticles,alpha olefin sulfonate(AOS)and sodium dodecyl sulfate(SDS),on foam stability and apparent viscosity was carried out.The experiments were conducted with the 2D Hele-Shaw cell at high foam qualities(80%-98%).Influence of AOS on the interaction between the LB foam and oil was also investigated.Results showed that the SiO2-LB foam apparent viscosity decreased with increasing surfactant concentration from 0.1 wt%to 0.3 wt%.0.1 wt%SiO2 was the optimum concentration and increased the 0.1 wt%LB foam stability by 108.65%at 96%foam quality.In the presence of co-surfactants,the most stable foam,with the highest apparent viscosity,was generated by AOS/LB solution at a ratio of 9:1.The emulsified crude oil did not imbibe into AOS-LB foam lamellae.Instead,oil was redirected into the plateau borders where the accumulated oil drops delayed the rate of film thinning,bubble coalescence and coarsening.
文摘In the present study,a novel approach based on an evolutionary wavelet neural network(EWNN)is proposed to estimate the slag quality in an electric arc furnace(EAF)employing power quality indices.In the EWNN,an evolutionary method is applied to train the parameters for a combination of neural networks and wavelets.I For this purpose,all of the electrical parameters for six melting processes are measured with a power quality analyzer,attached to the secondary component of an EAF transformer at a Saba steel complex,to estimate the foaming slag quality.Experimental results on various combinations of measured electrical parameters,applying the designed EWNN estimator,demonstrate that utilizing five leading indicators leads to the highest precision.The obtained 99%accuracy for estimating the foaming slag quality by EWNN compared to the other methods illustrates the proposed method's efficiency.
基金financial support by Universiti Teknologi PETRONAS (No. YUTP-0153AA-E70)
文摘This paper presents the rheological behaviour of supercritical CO2 (sCO2) foam at reser- voir conditions of I 500 psi and 80 ℃. Different commercial surfactants were screened and utilized in or- der to generate a fairly stable CO2 foam. Mixed surfactant system was also introduced to generate strong foam. Foam rheology was studied for some specific foam qualities using a high pressure high tempera- ture (HPHT) foam loop rheometer. A typical shear thinning behaviour of the foam was observed and a significant increase in the foam viscosity was noticed with the increase of foam quality until 85%. A de- sired high apparent viscosity with coarse texture was found at 85% foam quality. Foam visualization above 85% showed an unstable foam due to extremely thin lamella which collapsed and totally disap- peared in the loop rheometer. Below 52%, a non-homogenous and unstable foam was found having low viscosity with some liquid accumulation at the bottom of the circulation loop. This research has demon- strated rheology of sCO2 foams at different qualities at HPHT to obtain optimal foam quality region for immiscible CO2 foam co-injection process.