BACKGROUND Hepatic stellate cell(HSC)hyperactivation is a central link in liver fibrosis development.HSCs perform aerobic glycolysis to provide energy for their activation.Focal adhesion kinase(FAK)promotes aerobic gl...BACKGROUND Hepatic stellate cell(HSC)hyperactivation is a central link in liver fibrosis development.HSCs perform aerobic glycolysis to provide energy for their activation.Focal adhesion kinase(FAK)promotes aerobic glycolysis in cancer cells or fibroblasts,while FAK-related non-kinase(FRNK)inhibits FAK phosphorylation and biological functions.AIM To elucidate the effect of FRNK on liver fibrosis at the level of aerobic glycolytic metabolism in HSCs.METHODS Mouse liver fibrosis models were established by administering CCl4,and the effect of FRNK on the degree of liver fibrosis in the model was evaluated.Transforming growth factor-β1 was used to activate LX-2 cells.Tyrosine phosphorylation at position 397(pY397-FAK)was detected to identify activated FAK,and the expression of the glycolysis-related proteins monocarboxylate transporter 1(MCT-1)and enolase1(ENO1)was assessed.Bioinformatics analysis was performed to predict putative binding sites for c-myc in the ENO1 promoter region,which were validated with chromatin immunoprecipitation(ChIP)and dual luciferase reporter assays.RESULTS The pY397-FAK level was increased in human fibrotic liver tissue.FRNK knockout promoted liver fibrosis in mouse models.It also increased the activation,migration,proliferation and aerobic glycolysis of primary hepatic stellate cells(pHSCs)but inhibited pHSC apoptosis.Nevertheless,opposite trends for these phenomena were observed after exogenous FRNK treatment in LX-2 cells.Mechanistically,the FAK/Ras/c-myc/ENO1 pathway promoted aerobic glycolysis,which was inhibited by exogenous FRNK.CONCLUSION FRNK inhibits aerobic glycolysis in HSCs by inhibiting the FAK/Ras/c-myc/ENO1 pathway,thereby improving liver fibrosis.FRNK might be a potential target for liver fibrosis treatment.展开更多
目的:研究黏着斑相关非激酶(focal adhesion kinase related non-kinase,FRNK)对人乳腺癌MCF-7细胞增殖的抑制作用及相关机制。方法:通过RT-PCR方法克隆目的基因FRNK,构建pcDNA3.1-FRNK重组质粒;经脂质体分别介导重组质粒(pcDNA3.1-FRNK...目的:研究黏着斑相关非激酶(focal adhesion kinase related non-kinase,FRNK)对人乳腺癌MCF-7细胞增殖的抑制作用及相关机制。方法:通过RT-PCR方法克隆目的基因FRNK,构建pcDNA3.1-FRNK重组质粒;经脂质体分别介导重组质粒(pcDNA3.1-FRNK)、阳性对照质粒(pcDNA3.1-GFP)和空质粒(pcDNA3.1)转染MCF-7细胞,以正常MCF-7细胞作为空白对照;通过检测转染后细胞FRNK蛋白的表达,并结合转染pcDNA3.1-GFP后细胞表达荧光的多寡来评估转染效率;采用MTT法研究转染后12、24、48和72h各时间点细胞的增殖情况;转染质粒48h后,采用流式细胞术分析MCF-7细胞周期,Westernblot法检测细胞核内NF-κBp65的表达。结果:pcDNA3.1-FRNK质粒可经脂质体介导高效转染MCF-7细胞,促进细胞FRNK的表达,FRNK表达量在转染后48h达高峰;转染pcDNA3.1-FRNK后,MCF-7细胞增殖趋缓,且这种抑制增殖呈一定的时间依赖性;转染FRNK基因后,S+G2/M期的细胞比例较正常细胞显著下降(P<0.05);转染pcDNA3.1-FRNK后MCF-7细胞核内NF-κBp65蛋白表达减少。结论:FRNK可抑制MCF-7细胞增殖,其抑制作用与下调NF-κBp65核易位相关。展开更多
基金the National Natural Science Foundation of China,No.81860115,No.82060116 and No.81960118the Science and Technology Support Project of Guizhou Province,No.[2021]094.
文摘BACKGROUND Hepatic stellate cell(HSC)hyperactivation is a central link in liver fibrosis development.HSCs perform aerobic glycolysis to provide energy for their activation.Focal adhesion kinase(FAK)promotes aerobic glycolysis in cancer cells or fibroblasts,while FAK-related non-kinase(FRNK)inhibits FAK phosphorylation and biological functions.AIM To elucidate the effect of FRNK on liver fibrosis at the level of aerobic glycolytic metabolism in HSCs.METHODS Mouse liver fibrosis models were established by administering CCl4,and the effect of FRNK on the degree of liver fibrosis in the model was evaluated.Transforming growth factor-β1 was used to activate LX-2 cells.Tyrosine phosphorylation at position 397(pY397-FAK)was detected to identify activated FAK,and the expression of the glycolysis-related proteins monocarboxylate transporter 1(MCT-1)and enolase1(ENO1)was assessed.Bioinformatics analysis was performed to predict putative binding sites for c-myc in the ENO1 promoter region,which were validated with chromatin immunoprecipitation(ChIP)and dual luciferase reporter assays.RESULTS The pY397-FAK level was increased in human fibrotic liver tissue.FRNK knockout promoted liver fibrosis in mouse models.It also increased the activation,migration,proliferation and aerobic glycolysis of primary hepatic stellate cells(pHSCs)but inhibited pHSC apoptosis.Nevertheless,opposite trends for these phenomena were observed after exogenous FRNK treatment in LX-2 cells.Mechanistically,the FAK/Ras/c-myc/ENO1 pathway promoted aerobic glycolysis,which was inhibited by exogenous FRNK.CONCLUSION FRNK inhibits aerobic glycolysis in HSCs by inhibiting the FAK/Ras/c-myc/ENO1 pathway,thereby improving liver fibrosis.FRNK might be a potential target for liver fibrosis treatment.
文摘目的:研究黏着斑相关非激酶(focal adhesion kinase related non-kinase,FRNK)对人乳腺癌MCF-7细胞增殖的抑制作用及相关机制。方法:通过RT-PCR方法克隆目的基因FRNK,构建pcDNA3.1-FRNK重组质粒;经脂质体分别介导重组质粒(pcDNA3.1-FRNK)、阳性对照质粒(pcDNA3.1-GFP)和空质粒(pcDNA3.1)转染MCF-7细胞,以正常MCF-7细胞作为空白对照;通过检测转染后细胞FRNK蛋白的表达,并结合转染pcDNA3.1-GFP后细胞表达荧光的多寡来评估转染效率;采用MTT法研究转染后12、24、48和72h各时间点细胞的增殖情况;转染质粒48h后,采用流式细胞术分析MCF-7细胞周期,Westernblot法检测细胞核内NF-κBp65的表达。结果:pcDNA3.1-FRNK质粒可经脂质体介导高效转染MCF-7细胞,促进细胞FRNK的表达,FRNK表达量在转染后48h达高峰;转染pcDNA3.1-FRNK后,MCF-7细胞增殖趋缓,且这种抑制增殖呈一定的时间依赖性;转染FRNK基因后,S+G2/M期的细胞比例较正常细胞显著下降(P<0.05);转染pcDNA3.1-FRNK后MCF-7细胞核内NF-κBp65蛋白表达减少。结论:FRNK可抑制MCF-7细胞增殖,其抑制作用与下调NF-κBp65核易位相关。