期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The dynamical contact order:Protein folding rate parameters based on quantum conformational transitions 被引量:7
1
作者 ZHANG Ying LUO LiaoFu 《Science China(Life Sciences)》 SCIE CAS 2011年第4期386-392,共7页
Protein folding is regarded as a quantum transition between the torsion states of a polypeptide chain.According to the quantum theory of conformational dynamics,we propose the dynamical contact order(DCO) defined as a... Protein folding is regarded as a quantum transition between the torsion states of a polypeptide chain.According to the quantum theory of conformational dynamics,we propose the dynamical contact order(DCO) defined as a characteristic of the contact described by the moment of inertia and the torsion potential energy of the polypeptide chain between contact residues.Conse-quently,the protein folding rate can be quantitatively studied from the point of view of dynamics.By comparing theoretical calculations and experimental data on the folding rate of 80 proteins,we successfully validate the view that protein folding is a quantum conformational transition.We conclude that(i) a correlation between the protein folding rate and the contact inertial moment exists;(ii) multi-state protein folding can be regarded as a quantum conformational transition similar to that of two-state proteins but with an intermediate delay.We have estimated the order of magnitude of the time delay;(iii) folding can be classified into two types,exergonic and endergonic.Most of the two-state proteins with higher folding rate are exergonic and most of the multi-state proteins with low folding rate are endergonic.The folding speed limit is determined by exergonic folding. 展开更多
关键词 moment of inertia dynamical contact order (DCO) protein folding rate
原文传递
Statistical analyses of protein folding rates from the view of quantum transition 被引量:1
2
作者 LV Jun LUO Liao Fu 《Science China(Life Sciences)》 SCIE CAS 2014年第12期1197-1212,共16页
Understanding protein folding rate is the primary key to unlock the fundamental physics underlying protein structure and its folding mechanism.Especially,the temperature dependence of the folding rate remains unsolved... Understanding protein folding rate is the primary key to unlock the fundamental physics underlying protein structure and its folding mechanism.Especially,the temperature dependence of the folding rate remains unsolved in the literature.Starting from the assumption that protein folding is an event of quantum transition between molecular conformations,we calculated the folding rate for all two-state proteins in a database and studied their temperature dependencies.The non-Arrhenius temperature relation for 16 proteins,whose experimental data had previously been available,was successfully interpreted by comparing the Arrhenius plot with the first-principle calculation.A statistical formula for the prediction of two-state protein folding rate was proposed based on quantum folding theory.The statistical comparisons of the folding rates for 65 two-state proteins were carried out,and the theoretical vs.experimental correlation coefficient was 0.73.Moreover,the maximum and the minimum folding rates given by the theory were consistent with the experimental results. 展开更多
关键词 quantum folding protein folding rate temperature dependence number of torsion mode folding free energy
原文传递
Protein folding as a quantum transition between conformational states 被引量:7
3
作者 罗辽复 《Frontiers of physics》 SCIE CSCD 2011年第1期133-140,共8页
Assuming that the main variables in the life processes at the molecular level are the conforma- tion of biological macromolecules and their frontier electrons a formalism of quantum theory on conformation-electron sys... Assuming that the main variables in the life processes at the molecular level are the conforma- tion of biological macromolecules and their frontier electrons a formalism of quantum theory on conformation-electron system is proposed. Based on the quantum theory of conformation-electron system, the protein folding is regarded as a quantum transition between torsion states on polypep- tide chain, and the folding rate is calculated by nonadiabatic operator method. The rate calculation is generalized to the case of frequency variation in folding. An analytical form of protein folding rate formula is obtained, which can be served as a useful tool for further studying protein folding. The application of the rate theory to explain the protein folding experiments is briefly summarized. It includes the inertial moment dependence of folding rate, the unified description of two-state and multistate protein folding, the relationship of folding and unfolding rates versus denaturant concen- tration, the distinction between exergonic and endergonic foldings, the ultrafast and the downhill folding viewed from quantum folding theory, and, finally, the temperature dependence of folding rate and the interpretation of its non-Arrhenius behaviors. All these studies support the view that the protein folding is essentially a quantum transition between conformational states. 展开更多
关键词 protein folding rate quantum transition torsion states non-Arrhenius temperaturedependence exergonic and endergonic folding ultrafast folding
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部