Level of repair analysis(LORA) is an important method of maintenance decision for establishing systems of operation and maintenance in the equipment development period. Currently, the research on equipment of repair...Level of repair analysis(LORA) is an important method of maintenance decision for establishing systems of operation and maintenance in the equipment development period. Currently, the research on equipment of repair level focuses on economic analysis models which are used to optimize costs and rarely considers the maintenance time required by the implementation of the maintenance program. In fact, as to the system requiring high mission complete success, the maintenance time is an important factor which has a great influence on the availability of equipment systems. Considering the relationship between the maintenance time and the spares stocks level, it is obvious that there are contradictions between the maintenance time and the cost. In order to balance these two factors, it is necessary to build an optimization LORA model. To this end, the maintenance time representing performance characteristic is introduced, and on the basis of spares stocks which is traditionally regarded as a decision variable, a decision variable of repair level is added, and a multi-echelon multiindenture(MEMI) optimization LORA model is built which takes the best cost-effectiveness ratio as the criterion, the expected number of backorder(EBO) as the objective function and the cost as the constraint. Besides, the paper designs a convex programming algorithm of multi-variable for the optimization model, provides solutions to the non-convex objective function and methods for improving the efficiency of the algorithm. The method provided in this paper is proved to be credible and effective according to the numerical example and the simulation result.展开更多
Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equ...Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equivalence principle, a spares demand rate calculation method for redundant system is proposed through structure transformation. According to the system analysis method, the general modeling data structure of spares support echelon and system indenture is established, and the mission success probability is taken as the optimization target to build the dynamic optimization model of carrying spares during the process of multi-phase. By introducing the Lagrange multiplier, the spares weight, volume and cost are transformed to the single target of the spares total scale, and the initial Lagrange factors and its dynamic adjustment policy is proposed. In a given example, the main influence factors of the carrying spares project are analyzed, and the study results are in accordance with the reality, which can provide a new approach to mission-oriented carrying spares optimization for the redundant system.展开更多
Spare parts are critical to scheduled maintenance and fault repair, and can directly affect the readiness and combat capability of equipment. Equipmentrs capacity of carrying spares is influenced by its storage space ...Spare parts are critical to scheduled maintenance and fault repair, and can directly affect the readiness and combat capability of equipment. Equipmentrs capacity of carrying spares is influenced by its storage space and scales, so it is necessary to consider economic factors, e.g. spares cost, as well as non-economic ones, such as spares volume, mass and scale, when optimizing spares configuration. Aiming at this problem, the optimization model based on multi-constraints for carrying spares is built by METRIC theory and system analysis. Through the introduction of Lagrange factors, the spares cost is transformed to shadow price, and the optimization method for carrying spares and the dynamic adjustment policy of Lagrange factors are proposed. The result of a given example is analyzed, and demonstrates that the proposed model can be optimized with all constraints, and the research can provide a new way for carrying spares optimization.展开更多
This paper develops a new replacement policy for a system with multiple spare units.An optimal replacement period is determined by maximizing the mean time to failure of the system.We show that there exists a finite a...This paper develops a new replacement policy for a system with multiple spare units.An optimal replacement period is determined by maximizing the mean time to failure of the system.We show that there exists a finite and unique optimal replacement period T for units with strictly increasing failure rates. We also proof that the optimal repIacement period for a system with spares is decreasing in k. Furthermore, an algorithm is presented to get the optimal replacement period and a numerical example is given to illustrate the result. with strictly展开更多
Air spares support is general term of using and repairing of aircrafts which is the material foundation of aero technical support, its effectiveness influences operational effectiveness and equipments of aircrafts dir...Air spares support is general term of using and repairing of aircrafts which is the material foundation of aero technical support, its effectiveness influences operational effectiveness and equipments of aircrafts directly. Based on particle swarm optimization algorithm, a new model is proposed to optimize the distribution of the cost of air spares, it take the funds as resource and the improvement of performance efficiency as objective and deduces the expressions to get the best distribution plan. The results of experiments indicate that this model can make full use of the limited funds and obtain the highest efficiency of air spares support.展开更多
Cold spare is the most common configuration amongst the three types of configuration for systems used on board and for power generation systems. A new approach to calculate the unavailability of systems composed of id...Cold spare is the most common configuration amongst the three types of configuration for systems used on board and for power generation systems. A new approach to calculate the unavailability of systems composed of identical spares in cold spare configuration was proposed in this study. Instead of using the spare gate of dynamic fault tree( DFT) and the Markov analysis,AND gate of static fault tree used for calculating the unavailability of cold spare systems was proposed in this paper. By using this approach,unavailability of identical cold spare systems composed of nonrepairable spare components can be calculated exactly and systems composed of both repairable and nonreparable identical spare components can be estimated without building large Markov state diagram.展开更多
To obtain a higher readiness for a complex system, the common method is to store some spares. Confidence level of system spares is an important parameter to control the probability of the spares required. By introduci...To obtain a higher readiness for a complex system, the common method is to store some spares. Confidence level of system spares is an important parameter to control the probability of the spares required. By introducing fuzzy theory, this paper allocates the confidence level of system spares to its subsystems, thus to achieve a rational management of system spares,展开更多
This paper studies the solution technique to solve the DRAMA spares allocation optimization problem. DRAMA model is an analytic spare optimization model of a multi-item, multi-location, and two-echelon inventory syste...This paper studies the solution technique to solve the DRAMA spares allocation optimization problem. DRAMA model is an analytic spare optimization model of a multi-item, multi-location, and two-echelon inventory system. The computation of its system spares availability is much complicated. The objective function and constraint functions of DRAMA model could be written as the separable forms. A new bound heuristic algorithm has been presented by improving the bound heuristic algorithm for solving the reliability redundancy optimization problem (BHA in short). With the results, the proposed algorithm has been found to be more economical and effective than BHA to obtain the solutions of large DRAMA model. The new algorithm could be used to solve reliability redundancy optimization problems with the separable forms.展开更多
A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material d...A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example.展开更多
In order to optimize the spares configuration project at different stages during the life cycle, the factor of time is considered to relax the assumption of the spares steady demand in multi-echelon technique for reco...In order to optimize the spares configuration project at different stages during the life cycle, the factor of time is considered to relax the assumption of the spares steady demand in multi-echelon technique for recoverable item control (METRIC) theory. According to the method of systems analysis, the dynamic palm theorem is introduced to establish the prediction model of the spares demand rate, and its main influence factors are analyzed, based on which, the spares support effectiveness evaluation index system is studied, and the system optimization-oriented spares dynamic configuration method for multi-echelon multi-indenture system is proposed. Through the analysis of the optimization algorithm, the layered marginal algorithm is designed to improve the model calculation efficiency. In a given example, the multi-stage spares configuration project during its life cycle is gotten, the research result conforms to the actual status, and it can provide a new way for the spares dynamic optimization.展开更多
Firstly, the new combined error model of cumulative geoid height influenced by four error sources, including the inter-satellite range-rate of an interferometric laser (K-band) ranging system, the orbital position a...Firstly, the new combined error model of cumulative geoid height influenced by four error sources, including the inter-satellite range-rate of an interferometric laser (K-band) ranging system, the orbital position and velocity of a global positioning system (GPS) receiver and non-conservative force of an accelerometer, is established from the perspectives of the power spectrum principle in physics using the semi-analytical approach. Secondly, the accuracy of the global gravitational field is accurately and rapidly estimated based on the combined error model; the cumulative geoid height error is 1.985× 10^-1 m at degree 120 based on GRACE Level 1B measured observation errors of the year 2007 published by the US Jet Propulsion Laboratory (JPL), and the cumulative geoid height error is 5.825 × 10^-2 m at degree 360 using GRACE Follow-On orbital altitude 250 km and inter-satellite range 50 km. The matching relationship of accuracy indexes from GRACE Follow-On key payloads is brought forward, and the dependability of the combined error model is validated. Finally, the feasibility of high-accuracy and high-resolution global gravitational field estimation from GRACE Follow-On is demonstrated based on different satellite orbital altitudes.展开更多
With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircr...With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.展开更多
Peripheral nerve injury often causes neuropathic pain and is associated with changes in the expression of numerous proteins in the dorsal horn of the spinal cord. To date, proteomic analysis method has been used to si...Peripheral nerve injury often causes neuropathic pain and is associated with changes in the expression of numerous proteins in the dorsal horn of the spinal cord. To date, proteomic analysis method has been used to simultaneously analyze hundreds or thousands of proteins differentially expressed in the dorsal horn of the spinal cord in rats or dorsal root ganglion of rats with certain type of peripheral nerve injury. However, a proteomic study using a mouse model of neuropathic pain could be attempted because of abundant protein database and the availability of transgenic mice. In this study, whole proteins were extracted from the ipsilateral dorsal half of the 4th-6th lumbar spinal cord in a mouse model of spared nerve injury(SNI)-induced neuropathic pain. In-gel digests of the proteins size-separated on a polyacrylamide gel were subjected to reverse-phase liquid-chromatography coupled with electrospray ionization ion trap tandem mass spectrometry(MS/MS). After identifying proteins, the data were analyzed with subtractive proteomics using ProtAn, an in-house analytic program. Consequently, 15 downregulated and 35 upregulated proteins were identified in SNI mice. The identified proteins may contribute to the maintenance of neuropathic pain,and may provide new or valuable information in the discovery of new therapeutic targets for neuropathic pain.展开更多
基金supported by the National Natural Science Foundation of China(6110413261304148)
文摘Level of repair analysis(LORA) is an important method of maintenance decision for establishing systems of operation and maintenance in the equipment development period. Currently, the research on equipment of repair level focuses on economic analysis models which are used to optimize costs and rarely considers the maintenance time required by the implementation of the maintenance program. In fact, as to the system requiring high mission complete success, the maintenance time is an important factor which has a great influence on the availability of equipment systems. Considering the relationship between the maintenance time and the spares stocks level, it is obvious that there are contradictions between the maintenance time and the cost. In order to balance these two factors, it is necessary to build an optimization LORA model. To this end, the maintenance time representing performance characteristic is introduced, and on the basis of spares stocks which is traditionally regarded as a decision variable, a decision variable of repair level is added, and a multi-echelon multiindenture(MEMI) optimization LORA model is built which takes the best cost-effectiveness ratio as the criterion, the expected number of backorder(EBO) as the objective function and the cost as the constraint. Besides, the paper designs a convex programming algorithm of multi-variable for the optimization model, provides solutions to the non-convex objective function and methods for improving the efficiency of the algorithm. The method provided in this paper is proved to be credible and effective according to the numerical example and the simulation result.
基金supported by the National Defense Pre-research Project in the 13th Five-Year(41404050502)the National Defense Science and Technology Fund of the Central Military Commission(2101140)
文摘Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equivalence principle, a spares demand rate calculation method for redundant system is proposed through structure transformation. According to the system analysis method, the general modeling data structure of spares support echelon and system indenture is established, and the mission success probability is taken as the optimization target to build the dynamic optimization model of carrying spares during the process of multi-phase. By introducing the Lagrange multiplier, the spares weight, volume and cost are transformed to the single target of the spares total scale, and the initial Lagrange factors and its dynamic adjustment policy is proposed. In a given example, the main influence factors of the carrying spares project are analyzed, and the study results are in accordance with the reality, which can provide a new approach to mission-oriented carrying spares optimization for the redundant system.
基金supported in part by the General Armament Department Pre-research Foundation in 12th FiveYear(No.51304010206)the National Defense Pre-research Project in 13th Five-Year (No.41404050502)
文摘Spare parts are critical to scheduled maintenance and fault repair, and can directly affect the readiness and combat capability of equipment. Equipmentrs capacity of carrying spares is influenced by its storage space and scales, so it is necessary to consider economic factors, e.g. spares cost, as well as non-economic ones, such as spares volume, mass and scale, when optimizing spares configuration. Aiming at this problem, the optimization model based on multi-constraints for carrying spares is built by METRIC theory and system analysis. Through the introduction of Lagrange factors, the spares cost is transformed to shadow price, and the optimization method for carrying spares and the dynamic adjustment policy of Lagrange factors are proposed. The result of a given example is analyzed, and demonstrates that the proposed model can be optimized with all constraints, and the research can provide a new way for carrying spares optimization.
文摘This paper develops a new replacement policy for a system with multiple spare units.An optimal replacement period is determined by maximizing the mean time to failure of the system.We show that there exists a finite and unique optimal replacement period T for units with strictly increasing failure rates. We also proof that the optimal repIacement period for a system with spares is decreasing in k. Furthermore, an algorithm is presented to get the optimal replacement period and a numerical example is given to illustrate the result. with strictly
文摘Air spares support is general term of using and repairing of aircrafts which is the material foundation of aero technical support, its effectiveness influences operational effectiveness and equipments of aircrafts directly. Based on particle swarm optimization algorithm, a new model is proposed to optimize the distribution of the cost of air spares, it take the funds as resource and the improvement of performance efficiency as objective and deduces the expressions to get the best distribution plan. The results of experiments indicate that this model can make full use of the limited funds and obtain the highest efficiency of air spares support.
基金National High-Technology Research and Development Program of China(863 Program)(No.2013AA040203)
文摘Cold spare is the most common configuration amongst the three types of configuration for systems used on board and for power generation systems. A new approach to calculate the unavailability of systems composed of identical spares in cold spare configuration was proposed in this study. Instead of using the spare gate of dynamic fault tree( DFT) and the Markov analysis,AND gate of static fault tree used for calculating the unavailability of cold spare systems was proposed in this paper. By using this approach,unavailability of identical cold spare systems composed of nonrepairable spare components can be calculated exactly and systems composed of both repairable and nonreparable identical spare components can be estimated without building large Markov state diagram.
文摘To obtain a higher readiness for a complex system, the common method is to store some spares. Confidence level of system spares is an important parameter to control the probability of the spares required. By introducing fuzzy theory, this paper allocates the confidence level of system spares to its subsystems, thus to achieve a rational management of system spares,
文摘This paper studies the solution technique to solve the DRAMA spares allocation optimization problem. DRAMA model is an analytic spare optimization model of a multi-item, multi-location, and two-echelon inventory system. The computation of its system spares availability is much complicated. The objective function and constraint functions of DRAMA model could be written as the separable forms. A new bound heuristic algorithm has been presented by improving the bound heuristic algorithm for solving the reliability redundancy optimization problem (BHA in short). With the results, the proposed algorithm has been found to be more economical and effective than BHA to obtain the solutions of large DRAMA model. The new algorithm could be used to solve reliability redundancy optimization problems with the separable forms.
基金supported by the National Natural Science Foundation of China (60904002 70971132)
文摘A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example.
基金supported by the National Defense Pre-research Project in 13th Five-Year(41404050502)the National Defense Science and Technology Fund of the Central Military Commission(2101140)
文摘In order to optimize the spares configuration project at different stages during the life cycle, the factor of time is considered to relax the assumption of the spares steady demand in multi-echelon technique for recoverable item control (METRIC) theory. According to the method of systems analysis, the dynamic palm theorem is introduced to establish the prediction model of the spares demand rate, and its main influence factors are analyzed, based on which, the spares support effectiveness evaluation index system is studied, and the system optimization-oriented spares dynamic configuration method for multi-echelon multi-indenture system is proposed. Through the analysis of the optimization algorithm, the layered marginal algorithm is designed to improve the model calculation efficiency. In a given example, the multi-stage spares configuration project during its life cycle is gotten, the research result conforms to the actual status, and it can provide a new way for the spares dynamic optimization.
基金supported by the National Natural Science Foundation of China (Grant No 40674038)the Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering (Grant Nos KZCX2-YW-143 and KZCX2-YW-202)+1 种基金the National High Technology Research and Development Program of China (863) (Grant Nos 2009AA12Z138 and 2006AA09Z153)the Grant-in-Aid for Scientific Research of Japan (Grant No B19340129)
文摘Firstly, the new combined error model of cumulative geoid height influenced by four error sources, including the inter-satellite range-rate of an interferometric laser (K-band) ranging system, the orbital position and velocity of a global positioning system (GPS) receiver and non-conservative force of an accelerometer, is established from the perspectives of the power spectrum principle in physics using the semi-analytical approach. Secondly, the accuracy of the global gravitational field is accurately and rapidly estimated based on the combined error model; the cumulative geoid height error is 1.985× 10^-1 m at degree 120 based on GRACE Level 1B measured observation errors of the year 2007 published by the US Jet Propulsion Laboratory (JPL), and the cumulative geoid height error is 5.825 × 10^-2 m at degree 360 using GRACE Follow-On orbital altitude 250 km and inter-satellite range 50 km. The matching relationship of accuracy indexes from GRACE Follow-On key payloads is brought forward, and the dependability of the combined error model is validated. Finally, the feasibility of high-accuracy and high-resolution global gravitational field estimation from GRACE Follow-On is demonstrated based on different satellite orbital altitudes.
基金supported by the Fundamental Research Funds for the Central Universities(NS2015072)
文摘With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2015RIDIAIA01059432)
文摘Peripheral nerve injury often causes neuropathic pain and is associated with changes in the expression of numerous proteins in the dorsal horn of the spinal cord. To date, proteomic analysis method has been used to simultaneously analyze hundreds or thousands of proteins differentially expressed in the dorsal horn of the spinal cord in rats or dorsal root ganglion of rats with certain type of peripheral nerve injury. However, a proteomic study using a mouse model of neuropathic pain could be attempted because of abundant protein database and the availability of transgenic mice. In this study, whole proteins were extracted from the ipsilateral dorsal half of the 4th-6th lumbar spinal cord in a mouse model of spared nerve injury(SNI)-induced neuropathic pain. In-gel digests of the proteins size-separated on a polyacrylamide gel were subjected to reverse-phase liquid-chromatography coupled with electrospray ionization ion trap tandem mass spectrometry(MS/MS). After identifying proteins, the data were analyzed with subtractive proteomics using ProtAn, an in-house analytic program. Consequently, 15 downregulated and 35 upregulated proteins were identified in SNI mice. The identified proteins may contribute to the maintenance of neuropathic pain,and may provide new or valuable information in the discovery of new therapeutic targets for neuropathic pain.