This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the fe...This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution.展开更多
The issue of achieving prescribed-performance path following in robotics is addressed in this paper,where the aim is to ensure that a desired path within a specified region is accu-rately converged to by the controlle...The issue of achieving prescribed-performance path following in robotics is addressed in this paper,where the aim is to ensure that a desired path within a specified region is accu-rately converged to by the controlled vehicle.In this context,a novel form of the prescribed performance guiding vector field is introduced,accompanied by a prescribed-time sliding mode con-trol approach.Furthermore,the interdependence among the pre-scribed parameters is discussed.To validate the effectiveness of the proposed method,numerical simulations are presented to demonstrate the efficacy of the approach.展开更多
This paper presents a finite-time sideslip differentiator-based line-of-sight(LOS)guidance method for robust path following of snake robots.Firstly,finite-time stable sideslip differentiator and adaptive LOS guidance ...This paper presents a finite-time sideslip differentiator-based line-of-sight(LOS)guidance method for robust path following of snake robots.Firstly,finite-time stable sideslip differentiator and adaptive LOS guidance method are proposed to counteract sideslip drift caused by cross-track velocity.The proposed differentiator can accurately observe the cross-track error and sideslip angle for snake robots to avoid errors caused by calculating sideslip angle approximately.In our method,the designed piecewise auxiliary function guarantees the finite-time stability of position errors.Secondly,for the case of external disturbances and state constraints,a Barrier Lyapunov functionbased backstepping adaptive path following controller is presented to improve the robot’s robustness.The uniform ultimate boundedness of the closed-loop system is proved by analyzing stability.Additionally,a gait frequency adjustment-based virtual velocity control input is derived to achieve the exponential convergence of the tangential velocity.At last,the availability and superiority of this work are shown through simulation and experiment results.展开更多
To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal po...To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal policy opti-mization(DPPO)algorithm,which is a modified actor-critic-based type of reinforcement learning algorithm,is adapted to improve the controller performance in repeated trials.The LSTM network structure is introduced to solve the strong temporal cor-relation USV control problem.In addition,a specially designed path dataset,including straight and curved paths,is established to simulate various sailing scenarios so that the reinforcement learning controller can obtain as much handling experience as possible.Extensive numerical simulation results demonstrate that the proposed method has better control performance under missions involving complex maneuvers than trained with limited scenarios and can potentially be applied in practice.展开更多
Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest f...Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest from scientists and practitioners, though it is recognized as one of the weakest points of EIA systems globally. Also, EIA follow-up is influenced by the context, mainly in terms of the types of projects or activities and their related impacts on the environment. Therefore, the present paper is focused on the investigation of the follow-up stage applied to the activity of seismic survey coupled with offshore oil & gas exploitation in Brazil. Research was based on a qualitative approach that included document analysis and semi-structured interviews with analysts involved in EIA processes, and sought to generate evidence of effectiveness of the EIA follow-up as conducted by the Federal Environment Agency (Ibama) in order to situate the practice of follow-up in the broader context of international best practice principles. Based on the findings, it was concluded that, due to the peculiarities of offshore seismic survey, it is necessary to promote adaptations in the procedures for monitoring impacts in order to ensure proper alignment with the principles and conceptual foundations that guide EIA practice. Specifically, the timing of the execution of the activity imposes challenges for its integration into the “conventional” cycle that has guided the monitoring of the impacts in the EIA of projects.展开更多
Introduction: Despite the known benefits of newborn follow-up clinics, attendance has historically been difficult. Infants with reported follow-up difficulty have a greater incidence of severe sensorimotor and cogniti...Introduction: Despite the known benefits of newborn follow-up clinics, attendance has historically been difficult. Infants with reported follow-up difficulty have a greater incidence of severe sensorimotor and cognitive deficits and poorer access to early intervention programs. Our objective was to determine the parent-reported reasons for loss-to-follow up in patients hospitalised at the neonatology unit of Laquintinie Hospital. Methodology: We carried out a cross-sectional study through phone interviews with parents/caregivers of patients hospitalised at Laquintinie over a 2-year period from 1st January 2021 to 31st December 2022. A non-standardised structured interview guide was used for data collection. Loss-to-follow up referred to absence to at least one visit as recorded in the neonatal follow-up chart. All necessary administrative and ethical considerations were duly respected. Results: Most neonates were born through vaginal delivery (n = 313, 69.45%). The neonates were admitted at a median gestational age of 33 weeks (Q1-Q3;32 - 35) and the median duration of hospitalisation was 12 days (Q1 - Q3;8 - 18). A total of 23 neonates had died at the time of interview giving a mortality rate of 5.1%. The three most reported reasons for loss-to-follow-up was lack of money (n = 310, 68.13%), assumption that follow-up had ended (n = 37, 8.13%), and newborn that died (n = 23, 5.1%). Conclusion: This study highlights the significant impact of financial constraints and absence of a robust follow-up system on poor uptake of neonatal follow-up post-discharge in resource limited settings like Cameroon. Our results serve as advocacy for national health insurance especially in neonates.展开更多
Cam-followers provide reliable and controlled motions in various mechanical systems. Due to the highly fluctuating load between the cam and follower in operation, the cam-follower may be subjected to a high risk of co...Cam-followers provide reliable and controlled motions in various mechanical systems. Due to the highly fluctuating load between the cam and follower in operation, the cam-follower may be subjected to a high risk of contact fatigue failure. This paper assesses the fatigue life of a cycloidal displacement cam and a flat-faced follower under the defined loads and constraints. Computer-aided design (CAD) model of the cam-follower is developed in CATIA software and imported to ANSYS software for finite element analysis (FEA) of fatigue life. MATLAB programming is developed for determining the appropriate spring constant and pre-load force to always keep the cam and follower in contact. The fatigue life of the cam-follower has been estimated under the specified operating conditions. The analysis method can be applied to investigate the fatigue life of cams with other profiles, including the modified trapezoidal functions, polynomial functions, etc.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62173312 and 61803348in part by the National Major Scientific Instruments Development Project under Grant No.61927807+3 种基金in part by the Program for the Innovative Talents of Higher Education Institutions of ShanxiShanxi Province Science Foundation for Excellent Youthsin part by the Shanxi"1331 Project"Key Subjects Construction(1331KSC)in part by Graduate Innovation Project of Shanxi Province under Grant No.2021Y617。
文摘This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution.
基金supported by the National Natural Science Foundation of China(62073019)。
文摘The issue of achieving prescribed-performance path following in robotics is addressed in this paper,where the aim is to ensure that a desired path within a specified region is accu-rately converged to by the controlled vehicle.In this context,a novel form of the prescribed performance guiding vector field is introduced,accompanied by a prescribed-time sliding mode con-trol approach.Furthermore,the interdependence among the pre-scribed parameters is discussed.To validate the effectiveness of the proposed method,numerical simulations are presented to demonstrate the efficacy of the approach.
基金supported in part by the National Natural Science Foundation of China(61825305,62171274,U1933125,U2241228,62273019)the Shanghai Science and Technology Major Project(2021SHZDZX)+2 种基金the National Natural Science Foundation of China through the Main Research Projecton Machine Behavior and Human-Machine Collaborated Decision Making Methodology(72192820)the Third Research Projecton Human Behavior in HumanMachine Collaboration(72192822)the China Postdoctoral Science Foundation(2022M710093)。
文摘This paper presents a finite-time sideslip differentiator-based line-of-sight(LOS)guidance method for robust path following of snake robots.Firstly,finite-time stable sideslip differentiator and adaptive LOS guidance method are proposed to counteract sideslip drift caused by cross-track velocity.The proposed differentiator can accurately observe the cross-track error and sideslip angle for snake robots to avoid errors caused by calculating sideslip angle approximately.In our method,the designed piecewise auxiliary function guarantees the finite-time stability of position errors.Secondly,for the case of external disturbances and state constraints,a Barrier Lyapunov functionbased backstepping adaptive path following controller is presented to improve the robot’s robustness.The uniform ultimate boundedness of the closed-loop system is proved by analyzing stability.Additionally,a gait frequency adjustment-based virtual velocity control input is derived to achieve the exponential convergence of the tangential velocity.At last,the availability and superiority of this work are shown through simulation and experiment results.
基金supported by the National Natural Science Foundation(61601491)the Natural Science Foundation of Hubei Province(2018CFC865)the China Postdoctoral Science Foundation Funded Project(2016T45686).
文摘To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal policy opti-mization(DPPO)algorithm,which is a modified actor-critic-based type of reinforcement learning algorithm,is adapted to improve the controller performance in repeated trials.The LSTM network structure is introduced to solve the strong temporal cor-relation USV control problem.In addition,a specially designed path dataset,including straight and curved paths,is established to simulate various sailing scenarios so that the reinforcement learning controller can obtain as much handling experience as possible.Extensive numerical simulation results demonstrate that the proposed method has better control performance under missions involving complex maneuvers than trained with limited scenarios and can potentially be applied in practice.
文摘Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest from scientists and practitioners, though it is recognized as one of the weakest points of EIA systems globally. Also, EIA follow-up is influenced by the context, mainly in terms of the types of projects or activities and their related impacts on the environment. Therefore, the present paper is focused on the investigation of the follow-up stage applied to the activity of seismic survey coupled with offshore oil & gas exploitation in Brazil. Research was based on a qualitative approach that included document analysis and semi-structured interviews with analysts involved in EIA processes, and sought to generate evidence of effectiveness of the EIA follow-up as conducted by the Federal Environment Agency (Ibama) in order to situate the practice of follow-up in the broader context of international best practice principles. Based on the findings, it was concluded that, due to the peculiarities of offshore seismic survey, it is necessary to promote adaptations in the procedures for monitoring impacts in order to ensure proper alignment with the principles and conceptual foundations that guide EIA practice. Specifically, the timing of the execution of the activity imposes challenges for its integration into the “conventional” cycle that has guided the monitoring of the impacts in the EIA of projects.
文摘Introduction: Despite the known benefits of newborn follow-up clinics, attendance has historically been difficult. Infants with reported follow-up difficulty have a greater incidence of severe sensorimotor and cognitive deficits and poorer access to early intervention programs. Our objective was to determine the parent-reported reasons for loss-to-follow up in patients hospitalised at the neonatology unit of Laquintinie Hospital. Methodology: We carried out a cross-sectional study through phone interviews with parents/caregivers of patients hospitalised at Laquintinie over a 2-year period from 1st January 2021 to 31st December 2022. A non-standardised structured interview guide was used for data collection. Loss-to-follow up referred to absence to at least one visit as recorded in the neonatal follow-up chart. All necessary administrative and ethical considerations were duly respected. Results: Most neonates were born through vaginal delivery (n = 313, 69.45%). The neonates were admitted at a median gestational age of 33 weeks (Q1-Q3;32 - 35) and the median duration of hospitalisation was 12 days (Q1 - Q3;8 - 18). A total of 23 neonates had died at the time of interview giving a mortality rate of 5.1%. The three most reported reasons for loss-to-follow-up was lack of money (n = 310, 68.13%), assumption that follow-up had ended (n = 37, 8.13%), and newborn that died (n = 23, 5.1%). Conclusion: This study highlights the significant impact of financial constraints and absence of a robust follow-up system on poor uptake of neonatal follow-up post-discharge in resource limited settings like Cameroon. Our results serve as advocacy for national health insurance especially in neonates.
文摘Cam-followers provide reliable and controlled motions in various mechanical systems. Due to the highly fluctuating load between the cam and follower in operation, the cam-follower may be subjected to a high risk of contact fatigue failure. This paper assesses the fatigue life of a cycloidal displacement cam and a flat-faced follower under the defined loads and constraints. Computer-aided design (CAD) model of the cam-follower is developed in CATIA software and imported to ANSYS software for finite element analysis (FEA) of fatigue life. MATLAB programming is developed for determining the appropriate spring constant and pre-load force to always keep the cam and follower in contact. The fatigue life of the cam-follower has been estimated under the specified operating conditions. The analysis method can be applied to investigate the fatigue life of cams with other profiles, including the modified trapezoidal functions, polynomial functions, etc.