Consumption of natto,a traditional eastern Asian food made of fermented soybeans by Bacillus subtilis,has long been linked to healthy aging and longer human lifespan.As the key thrombolytic ingredient of natto,the ser...Consumption of natto,a traditional eastern Asian food made of fermented soybeans by Bacillus subtilis,has long been linked to healthy aging and longer human lifespan.As the key thrombolytic ingredient of natto,the serine protease nattokinase(NK)has been developed into a widely-used dietary supplement.NK has shown excellent anti-thrombus,thrombolytic,and anti-inflammation activities that potentially delay aging and provide therapeutic effects on aging-related diseases.In this review,we critically overview the experimental and clinical evidence in the past 20 years that support the beneficial function of NK in the prevention and treatment of aging-related diseases,including cardiovascular diseases,Alzheimer’s disease,other abnormalities and cancer.We focus on the underlying molecular mechanisms and recent advances in application methods that are aimed at further development of NK for healthier aging of modern society.The challenges and unsolved issues in this area are also discussed.展开更多
Spirulina and Bilberry are underexplored and underutilized in the food industry. Therefore, this research focuses on determining the antioxidative properties of Spirulina and Bilberry for future use in functional food...Spirulina and Bilberry are underexplored and underutilized in the food industry. Therefore, this research focuses on determining the antioxidative properties of Spirulina and Bilberry for future use in functional food product development. The objective was to determine the Total Phenolic Content (TPC) and Total Flavonoid Content (TFC) in Spirulina and Bilberry extracts (Aqueous and Ethanol extracts) and their antioxidative potential (2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Potential (FRAP), Trolox Equivalent Antioxidant Capacity (TEAC), and Nitric Oxide Radical Scavenging Ability (NORS)). Spirulina and Bilberry pure and combination samples [100% Spirulina (100S), 100% Bilberry (100B), 50% Spirulina + 50% Bilberry (50S + 50B), 75% Spirulina + 25% Bilberry (75S + 25B), & 25% Spirulina + 75% Bilberry (25S + 75B)], were extracted with aqueous (deionized water) and 80% ethanol solutions. Colorimetric antioxidant assays were used to determine total phenolics, total flavonoids, and their antioxidant potential. 80% ethanol Spirulina and Bilberry (pure and combination) extracts resulted in higher TFC, FRAP, and DPPH, whereas aqueous extracts had higher TPC, NORS, and TEAC, suggesting both hydrophilic and lipophilic bioactive compounds in Spirulina and Bilberry. Spirulina and Bilberry are two potential functional food ingredients for the food industry due to their antioxidative properties.展开更多
Table olives (Olea europaea L.) are one of the most important fermented vegetables worldwide, whereas sea fennel (Crithmum maritimum L.) represents an emerging food crop, characterized by interesting nutritional and s...Table olives (Olea europaea L.) are one of the most important fermented vegetables worldwide, whereas sea fennel (Crithmum maritimum L.) represents an emerging food crop, characterized by interesting nutritional and sensory qualities. Both are characterized by a high concentration of bioactive compounds with health beneficial effects. Thanks to these features, table olives and sea fennel undoubtedly represent two valuable ingredients for the manufacture of innovative vegetable preserves. Given these premises, the present study was aimed at exploring the co-fermentation of green olives and sea fennel to produce laboratory-scale prototypes of innovative high value preserves. To this end, the effects of two recipes, two standard methods for production of table olives, and two fermentation microbiota (resident or inoculated) were assessed. The prototypes were evaluated for their microbial dynamics as well as for key sensory traits by a panel of trained assessors. During the fermentation, all the prototypes showed a progressive pH reduction. Mesophilic lactobacilli, mesophilic lactococci, and yeasts were the main microbial groups at the end of the fermentation, while Enterobacteriaceae decreased during fermentation. Metataxonomic analysis revealed an evolution of the microbiota, with Lactiplantibacillus plantarum dominating in all the prototypes in the late stage of fermentation, irrespective of the recipe, processing method, and starter inoculation. A greater crunchiness and lower fibrousness were perceived in the Greek style prototypes, which were preferred than Spanish style prototypes by trained panelists.展开更多
基金supported by the China Postdoctoral Science Foundation(2021M693870,2022M711395)the National Natural Science Foundation of China(32000426,31971335)Department of Education of Liaoning Province(1911520092).
文摘Consumption of natto,a traditional eastern Asian food made of fermented soybeans by Bacillus subtilis,has long been linked to healthy aging and longer human lifespan.As the key thrombolytic ingredient of natto,the serine protease nattokinase(NK)has been developed into a widely-used dietary supplement.NK has shown excellent anti-thrombus,thrombolytic,and anti-inflammation activities that potentially delay aging and provide therapeutic effects on aging-related diseases.In this review,we critically overview the experimental and clinical evidence in the past 20 years that support the beneficial function of NK in the prevention and treatment of aging-related diseases,including cardiovascular diseases,Alzheimer’s disease,other abnormalities and cancer.We focus on the underlying molecular mechanisms and recent advances in application methods that are aimed at further development of NK for healthier aging of modern society.The challenges and unsolved issues in this area are also discussed.
文摘Spirulina and Bilberry are underexplored and underutilized in the food industry. Therefore, this research focuses on determining the antioxidative properties of Spirulina and Bilberry for future use in functional food product development. The objective was to determine the Total Phenolic Content (TPC) and Total Flavonoid Content (TFC) in Spirulina and Bilberry extracts (Aqueous and Ethanol extracts) and their antioxidative potential (2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Potential (FRAP), Trolox Equivalent Antioxidant Capacity (TEAC), and Nitric Oxide Radical Scavenging Ability (NORS)). Spirulina and Bilberry pure and combination samples [100% Spirulina (100S), 100% Bilberry (100B), 50% Spirulina + 50% Bilberry (50S + 50B), 75% Spirulina + 25% Bilberry (75S + 25B), & 25% Spirulina + 75% Bilberry (25S + 75B)], were extracted with aqueous (deionized water) and 80% ethanol solutions. Colorimetric antioxidant assays were used to determine total phenolics, total flavonoids, and their antioxidant potential. 80% ethanol Spirulina and Bilberry (pure and combination) extracts resulted in higher TFC, FRAP, and DPPH, whereas aqueous extracts had higher TPC, NORS, and TEAC, suggesting both hydrophilic and lipophilic bioactive compounds in Spirulina and Bilberry. Spirulina and Bilberry are two potential functional food ingredients for the food industry due to their antioxidative properties.
基金funded by the Marche Region under the PSR2014-2020 Programme“Misura 16.1-Sostegno per la costituzione e la gestione dei gruppi operativi del PEI in materia di produttivit`a e sostenibilit`a dell’agricoltura Azione 2-Fase di gestione del G.O.e realizzazione del Piano di Attivit`a”Project:“New vegetable organic preserves from autochthonous sea fennel organic crop(Crithmum maritimum L.)”(acronym:BIO-VEG-CONSERVE,http://www.biovegcon serve.it/).
文摘Table olives (Olea europaea L.) are one of the most important fermented vegetables worldwide, whereas sea fennel (Crithmum maritimum L.) represents an emerging food crop, characterized by interesting nutritional and sensory qualities. Both are characterized by a high concentration of bioactive compounds with health beneficial effects. Thanks to these features, table olives and sea fennel undoubtedly represent two valuable ingredients for the manufacture of innovative vegetable preserves. Given these premises, the present study was aimed at exploring the co-fermentation of green olives and sea fennel to produce laboratory-scale prototypes of innovative high value preserves. To this end, the effects of two recipes, two standard methods for production of table olives, and two fermentation microbiota (resident or inoculated) were assessed. The prototypes were evaluated for their microbial dynamics as well as for key sensory traits by a panel of trained assessors. During the fermentation, all the prototypes showed a progressive pH reduction. Mesophilic lactobacilli, mesophilic lactococci, and yeasts were the main microbial groups at the end of the fermentation, while Enterobacteriaceae decreased during fermentation. Metataxonomic analysis revealed an evolution of the microbiota, with Lactiplantibacillus plantarum dominating in all the prototypes in the late stage of fermentation, irrespective of the recipe, processing method, and starter inoculation. A greater crunchiness and lower fibrousness were perceived in the Greek style prototypes, which were preferred than Spanish style prototypes by trained panelists.