期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Trajectory Tracking of a Planer Parallel Manipulator by Using Computed Force Control Method 被引量:6
1
作者 Atilla BAYRAM 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期449-458,共10页
Despite small workspace, parallel manipulators have some advantages over their serial counterparts in terms of higher speed, acceleration, rigidity, accuracy, manufacturing cost and payload. Accordingly, this type of ... Despite small workspace, parallel manipulators have some advantages over their serial counterparts in terms of higher speed, acceleration, rigidity, accuracy, manufacturing cost and payload. Accordingly, this type of manipulators can be used in many applications such as in high-speed machine tools, tuning machine for feeding, sensitive cutting, assembly and packaging. This paper presents a special type of planar parallel manipulator with three degrees of freedom. It is constructed as a variable geometry truss generally known planar Stewart platform. The reachable and orientation workspaces are obtained for this manipulator. The inverse kinematic analysis is solved for the trajectory tracking according to the redundancy and joint limit avoidance. Then, the dynamics model of the manipulator is established by using Virtual Work method. The simulations are performed to follow the given planar trajectories by using the dynamic equations of the variable geometry truss manipulator and computed force control method. In computed force control method, the feedback gain matrices for PD control are tuned with fixed matrices by trail end error and variable ones by means of optimization with genetic algorithm. 展开更多
关键词 Parallel manipulator Variable geometry truss manipulator Planar Stewart platform. Dynamic analysis Computed force control Genetic algorithm
下载PDF
Reputation-based joint optimization of user satisfaction and resource utilization in a computing force network
2
作者 Yuexia FU Jing WANG +2 位作者 Lu LU Qinqin TANG Sheng ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第5期685-700,共16页
Under the development of computing and network convergence,considering the computing and network resources of multiple providers as a whole in a computing force network(CFN)has gradually become a new trend.However,sin... Under the development of computing and network convergence,considering the computing and network resources of multiple providers as a whole in a computing force network(CFN)has gradually become a new trend.However,since each computing and network resource provider(CNRP)considers only its own interest and competes with other CNRPs,introducing multiple CNRPs will result in a lack of trust and difficulty in unified scheduling.In addition,concurrent users have different requirements,so there is an urgent need to study how to optimally match users and CNRPs on a many-to-many basis,to improve user satisfaction and ensure the utilization of limited resources.In this paper,we adopt a reputation model based on the beta distribution function to measure the credibility of CNRPs and propose a performance-based reputation update model.Then,we formalize the problem into a constrained multi-objective optimization problem and find feasible solutions using a modified fast and elitist non-dominated sorting genetic algorithm(NSGA-II).We conduct extensive simulations to evaluate the proposed algorithm.Simulation results demonstrate that the proposed model and the problem formulation are valid,and the NSGA-II is effective and can find the Pareto set of CFN,which increases user satisfaction and resource utilization.Moreover,a set of solutions provided by the Pareto set give us more choices of the many-to-many matching of users and CNRPs according to the actual situation. 展开更多
关键词 Computing force network Resource scheduling Performance-based reputation User satisfaction
原文传递
Combining graph neural network with deep reinforcement learning for resource allocation in computing force networks
3
作者 Xueying HAN Mingxi XIE +3 位作者 Ke YU Xiaohong HUANG Zongpeng DU Huijuan YAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第5期701-712,共12页
Fueled by the explosive growth of ultra-low-latency and real-time applications with specific computing and network performance requirements,the computing force network(CFN)has become a hot research subject.The primary... Fueled by the explosive growth of ultra-low-latency and real-time applications with specific computing and network performance requirements,the computing force network(CFN)has become a hot research subject.The primary CFN challenge is to leverage network resources and computing resources.Although recent advances in deep reinforcement learning(DRL)have brought significant improvement in network optimization,these methods still suffer from topology changes and fail to generalize for those topologies not seen in training.This paper proposes a graph neural network(GNN)based DRL framework to accommodate network trafic and computing resources jointly and efficiently.By taking advantage of the generalization capability in GNN,the proposed method can operate over variable topologies and obtain higher performance than the other DRL methods. 展开更多
关键词 Computing force network Routing optimization Deep learning Graph neural network Resource allocation
原文传递
THE COMPUTATION OF SEEPAGE FORCE ON MARINE STRUCTURES WITH FINITE ELEMENT METHOD
4
作者 Tang Ling Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University of Technology,Shanghai 200072,P.R.China Liu Ying-zhong Shanghai Jiaotong University,Shanghai 200030,P.R.China 《Journal of Hydrodynamics》 SCIE EI CSCD 1990年第3期36-44,共9页
The wave-induced seepage force is investigated on marine structures resting on or buried in the seabed.The bed is modelled as a poroelastic medium containing a nearly saturated water.The governing equations are solved... The wave-induced seepage force is investigated on marine structures resting on or buried in the seabed.The bed is modelled as a poroelastic medium containing a nearly saturated water.The governing equations are solved with Finite Element Method.For a pipeline buried in the seabed,agreement between the present numerical results and that of Cheng H.D.(1986)is quite satisfactory. 展开更多
关键词 THE computation OF SEEPAGE force ON MARINE STRUCTURES WITH FINITE ELEMENT METHOD
原文传递
Computational Fluid Dynamics Uncertainty Analysis for Simulations of Roll Motions for a 3D Ship 被引量:5
5
作者 朱仁传 杨春蕾 +1 位作者 缪国平 范菊 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第5期591-599,共9页
The roll motions are influenced by significant viscous effects such as the flow separation.The 3D simulations of free decay roll motions for the ship model DTMB 5512 are carried out by Reynold averaged NavierStokes(RA... The roll motions are influenced by significant viscous effects such as the flow separation.The 3D simulations of free decay roll motions for the ship model DTMB 5512 are carried out by Reynold averaged NavierStokes(RANS) method based on the dynamic mesh technique.A new moving mesh technique is adopted and discussed in details for the present simulations.The purpose of the research is to obtain accurate numerical prediction for roll motions with their respective numerical/modeling errors and uncertainties.Errors and uncertainties are estimated by performing the modern verification and validation(V&V) procedures.Simulation results for the free-floating surface combatant are used to calculate the linear,nonlinear damping coefficients and resonant frequencies including a wide range of forward speed.The present work can provide a useful reference to calculate roll damping by computational fluid dynamics(CFD) method and simulate a general ship motions in waves. 展开更多
关键词 Reynold averaged Navier-Stokes(RANS) method free decay forced roll computational fluid dynamics uncertainty
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部