期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Effects of forced cooling on mechanical properties and fracture behavior of heavy section ductile iron 被引量:3
1
作者 Er-jun Guo Liang Song +1 位作者 Li-ping Wang Dong-rong Liu 《China Foundry》 SCIE 2015年第6期398-405,共8页
To develop materials suitable for spent-nuclear-fuel containers, the effect of forced cooling on mechanical properties and fracture toughness of heavy section ductile iron was investigated. Two cubic castings with dif... To develop materials suitable for spent-nuclear-fuel containers, the effect of forced cooling on mechanical properties and fracture toughness of heavy section ductile iron was investigated. Two cubic castings with different cooling processes were prepared: casting A was prepared in a totally sand mold, and casting B was prepared in a sand mold with two chilling blocks placed on the left and right sides of the mold. Three positions in each casting with different solidification cooling rates were chosen. In-situ SEM tensile experiment was used to observe the dynamic tensile process. Fracture analysis was conducted to study the influence of vermicular and slightly irregular spheroidal graphite on the fracture behavior of heavy section ductile iron. Results show that the tensile strength, elongation, impact toughness and fracture toughness at different positions of the two castings all decrease with decreasing cooling rate. With the increase of solidification time, the fracture mechanism of conventional casting A changes from ductile fracture to brittle fracture, and that of casting B with forced cooling changes from ductile fracture to a mixture of ductile-brittle fracture. 展开更多
关键词 heavy section ductile iron forced cooling in-situ SEM tensile fracture toughness
下载PDF
Effect of forced cooling on weld appearance and microhardness of electron beam welded QCr0. 8 alloy 被引量:2
2
作者 王厚勤 张秉刚 +3 位作者 王廷 陈闻庆 冯吉才 李瑞山 《China Welding》 EI CAS 2015年第2期63-68,共6页
Electron beam welding of QCr0. 8 chromium bronze was ineestigated to improve weld appearance and reduce the size of softened zone of the joints. Effect of forced cooling on weld appearanee and microhardness of the joi... Electron beam welding of QCr0. 8 chromium bronze was ineestigated to improve weld appearance and reduce the size of softened zone of the joints. Effect of forced cooling on weld appearanee and microhardness of the joints was studied by both experiment and numerical simulation. Both welding with and without forced cooling were conducted and analyzed comparatively. The results showed that a quasi steady state temperature.field and a large temperature gradient perpendicular to welding direction could achieved by forced cooling. A consistent weld width throughout the entire weld and smooth surface for both the top and bottom was achieved by forced cooling process. The width of softened zone of the joint was reduced from 2. 6 mm to I mm by forced cooling. 展开更多
关键词 QCr0. 8 alloy electron beam welding forced cooling temperature field
下载PDF
Purification of carbazole by solvent crystallization under two forced cooling modes 被引量:1
3
作者 Cui-Ping Ye Ya-Fei Qiao +1 位作者 Rui-Nan Wang Wen-Ying Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第7期173-179,共7页
To identify the effect of solvents and anthracene on the purification of carbazole,the solvent crystallization of carbazole was investigated with xylene,chlorobenzene and tetrachloroethylene(TCE)as solvents under two ... To identify the effect of solvents and anthracene on the purification of carbazole,the solvent crystallization of carbazole was investigated with xylene,chlorobenzene and tetrachloroethylene(TCE)as solvents under two forced circulation cooling(FCC)modes.The co-crystalline experimental data were obtained from runs carried out at different anthracene levels between 1%(mass)and 10%(mass).The results showed that a uniform flake carbazole crystal obtained when using xylene and chlorobenzene under the FCC-1 mode with gradual cooling rate.Nevertheless,fine flake crystals grown under shock cooling of FCC-2 mode.It is beneficial to improving the purity of carbazole with chlorobenzene as solvent under cooling mode of FCC-1.Anthracene could promote the growth of carbazole in solution,and it has a significant influence on the purification of carbazole. 展开更多
关键词 SEPARATION Solvent crystallization forced circulation cooling Anthracene CARBAZOLE
下载PDF
Multi-Pass Simulation of Heavy Plate Rolling Including Intermediate Forced Cooling
4
作者 E.J.Palmiere A.A.Howe H.C.Carey 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S1期506-510,共5页
Thermomechanical Controlled Processing (TMCP) including accelerated cooling after the final hot rolling pass is a well-established technology,widely applied in HSLA steel plate production.However,there are still certa... Thermomechanical Controlled Processing (TMCP) including accelerated cooling after the final hot rolling pass is a well-established technology,widely applied in HSLA steel plate production.However,there are still certain limitations,especially for thicker plate.The rolling schedule includes a long holding period (HP) after the roughing stage to allow the temperature to fall sufficiently for optimised TMCP during finishing.Intermediate Forced Cooling (IFC) applied during the HP can increase productivity by decreasing the required hold time,can restrict austenite grain growth,and can also improve the subsequent strain penetration in thick plate with further metallurgical benefits.Multi-pass plane strain compression (PSC) tests have been performed on the thermomechanical compression (TMC) machine at Sheffield University including different severities of IFC.Clearly it is impossible to simulate all aspects of the temperature and strain gradients present in thick plates in laboratory specimens,and most of the tests were conducted at temperatures and strains calculated by Finite Element modelling as relevant to specific positions through the plate thickness.However,some aspects of the gradients were addressed with tests using cold platens.The results have indeed shown that IFC can shorten the HP and reduce austenite grain growth and its variation across thick plate. 展开更多
关键词 Steel plate rolling intermediate forced cooling plane strain compression RECRYSTALLISATION grain growth finite element modelling temperature and strain distribution
原文传递
Analysis and Numerical Simulation of Forced Cooling in Induction Coils With High Current Density
5
作者 BRESSAN Fernando FORZAN Michele +2 位作者 LUPI Sergio NIKANOROV Aleksandr NACKE Bernard 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第S2期758-761,共4页
A static model of the forced cooling of inductors used for induction heating is proposed in order to achieve better coil design to prolong its lifetime and prevent failures.The main aim is to define for the most commo... A static model of the forced cooling of inductors used for induction heating is proposed in order to achieve better coil design to prolong its lifetime and prevent failures.The main aim is to define for the most common copper tubes and inductor geometries an equivalent convection heat transmission coefficient depending upon temperature and pressure of the cooling fluid,in order to model the very complex physics of forced cooling with a strongly simplified method.The model,called 'Line Region Model',considers only the coil's copper tube and its internal surface(interface copper-water)as boundary where the heat exchange conditions are imposed. 展开更多
关键词 coefficient of heat transfer by convection forced cooling of inductor high current density
原文传递
Forced Compressed Air Cooling System for a 300 MW Steam Turbine in Waigaoqiao Power Plant
6
作者 Sun Shixiong Hua Hong Shanghai Waigaoqiao Thermal Power Plant 《Electricity》 1996年第4期22-24,共3页
The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storag... The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storage capacity and good thermal insulation, so the metal temperature of first stage of HP cylinder (FSMTI) may reach 400-450℃ after shut down and it takes 7-8 days to cool to 150℃ by natural cooling, Now with a forced cooling system the cooling time may be reduced to 40 hours, so that the turbine may be opened for repair work in about 5-6 days. The cooling system for #2 unit and test procedure are briefly described below. 展开更多
关键词 der forced Compressed Air cooling System for a 300 MW Steam Turbine in Waigaoqiao Power Plant ITI 认认 TEST 司卜 月卜 HP IP 一基
下载PDF
Prediction Model for Cooling of an Electrical Unit with Time-Dependent Heat Generation
7
作者 Adil A. Alwan Rafel H. Hameed 《Journal of Mechanics Engineering and Automation》 2012年第2期124-131,共8页
The satisfactory performance of electrical equipments depends on their operating temperature. In order to maintain these devices within the safe temperature limits, an effective cooling is needed. High heat transfer r... The satisfactory performance of electrical equipments depends on their operating temperature. In order to maintain these devices within the safe temperature limits, an effective cooling is needed. High heat transfer rate of compact in size and reliable operation are the challenges of a thermal design engineer of electronic equipment. Then, it has been simulated the transient a three-dimensional model to study the heating phenomenon with two assumption values of heat generation. To control for the working of this equipment, cooling process was modeled by choosing one from different cooling technique. Constant low speed fan at one direction of air flow was used for cooling to predict the reducing of heating temperature through working of this equipment. Numerical Solution of finite difference time domain method (FDTD) has been utilized to simulate the temporal and spatial temperature profiles through two processes, which would minimize the solution errors. 展开更多
关键词 cooling by force convection cooling electronic equipment thermal analysis of electronic equipment numerical modeling of cooling electronic equipment.
下载PDF
An invariant descriptor for conjugate forced convection-conduction cooling of 3D protruding heaters in channel flow
8
作者 Thiago ANTONINI ALVES Paulo H. D. SANTOS Murilo A. BARBUR 《Frontiers of Mechanical Engineering》 SCIE CSCD 2015年第3期263-276,共14页
In this research, the temperatures of three- dimensional (3D) protruding heaters mounted on a conductive substrate in a horizontal rectangular channel with laminar airflow are related to the independent power dissip... In this research, the temperatures of three- dimensional (3D) protruding heaters mounted on a conductive substrate in a horizontal rectangular channel with laminar airflow are related to the independent power dissipation in each heater by using a matrix G+ with invariant coefficients, which are dimensionless. These coefficients are defined in this study as the conjugate influence coefficients (g+) caused by the forced convec- tion-conduction nature of the heaters' cooling process. The temperature increase of each heater in the channel is quantified to clearly identify the contributions attributed to the self-heating and power dissipation in the other heaters (both upstream and downstream). The conjugate coefficients are invariant with the heat generation rate in the array of heaters when assuming a defined geometry, invariable fluid and flow rate, and constant substrate and heater conductivities. The results are numerically obtained by considering three 3D protruding heaters on a twodimensional (2D) array by ANSYS/FluentTM 15.0 software. The conservation equations are solved by a coupled procedure within a single calculation domain comprising of solid and fluid regions and by considering a steady state laminar airflow with constant properties. Some examples are shown, indicating the effects of substrate thermal conductivity and Reynolds number on conjugate influence coefficients. 展开更多
关键词 channel flow conjugate forced convection-conduction cooling conjugate influence coefficients dis-crete heating invariant descriptor thermal management
原文传递
Performance analysis of a novel integrated photovoltaic-thermal system by top-surface forced circulation of water 被引量:1
9
作者 Md Arman Arefin Mohammad Towhidul Islam +1 位作者 Mohammad Zunaed Khodadad Mostakim 《Clean Energy》 EI 2020年第4期316-327,共12页
Almost 80-90%of energy is wasted as heat(provides no value)in a photovoltaic(PV)panel.An integrated photovoltaic-thermal(PVT)system can utilize this energy and produce electricity simultaneously.In this research,throu... Almost 80-90%of energy is wasted as heat(provides no value)in a photovoltaic(PV)panel.An integrated photovoltaic-thermal(PVT)system can utilize this energy and produce electricity simultaneously.In this research,through energy and exergy analysis,a novel design and methodology of a PVT system are studied and validated.Unlike the common methods,here the collector is located outside the PV panel and connected with pipes.Water passes over the top of the panel and then is forced to the collector by a pump.The effects of different water-mass flow rates on the PV panel and collector,individual and overall efficiency,mass loss,exergetic efficiency are examined experimentally.Results show that the overall efficiency of the system is around five times higher than the individual PV-panel efficiency.The forced circulation of water dropped the panel temperature and increased the panel efficiency by 0.8-1%and exergy by 0.6-1%,where the overall energy efficiency was~81%. 展开更多
关键词 integrated photovoltaic-thermal forced cooling energy analysis exergy analysis flat-plate collector
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部