期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Non-Darcy Flow in Molding Sands
1
作者 Miguel A. Barron-Meza Joan Reyes-Miranda Daniel Flores-Sanchez 《Open Journal of Applied Sciences》 2024年第4期976-982,共7页
Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this ... Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this law ceases to be valid. In this work, the Ergun equation is employed to consider the non-linearity of air velocity with the pressure gradient in casting sands. The contribution of non-linearity to the total flow in terms of a variable defined as a non-Darcy flow fraction is numerically quantified. In addition, the influence of the shape factor of the sand grains on the non-linear flow fraction is analyzed. It is found that for values of the Reynolds number less or equal than 1, the contribution of non-linearity for spherical particles is around 1.15%. 展开更多
关键词 Darcy’s Law Molding sands non-darcy flow Reynolds Number shape Factor
下载PDF
Non-Darcy flows in layered porous media(LPMs)with contrasting pore space structures 被引量:2
2
作者 Xue-Yi Zhang Zhi Dou +2 位作者 Jin-Guo Wang Zhi-Fang Zhou Chao Zhuang 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2004-2013,共10页
Compared to single layer porous media,fluid flow through layered porous media(LPMs)with contrasting pore space structures is more complex.This study constructed three-dimensional(3-D)pore-scale LPMs with different gra... Compared to single layer porous media,fluid flow through layered porous media(LPMs)with contrasting pore space structures is more complex.This study constructed three-dimensional(3-D)pore-scale LPMs with different grain size ratios of 1.20,1.47,and 1.76.The flow behavior in the constructed LPMs and single layer porous media was numerically investigated.A total of 178 numerical experimental data were collected in LPMs and single layer porous media.In all cases,two different flow regimes(i.e.,Darcy and Non-Darcy)were observed.The influence of the interface of layers on Non-Darcy flow behavior in LPMs was analyzed based pore-scale flow data.It was found that the available correlations based on single layer porous media fail to predict the flow behavior in LPMs,especially for LPM with large grain size ratio.The effective permeability,which incorporated the influence of the interface is more accurate than the Kozeny-Carman equation for estimating the Darcy permeability of LPMs.The inertial pressure loss in LPMs,which determines the onset of the Non-Darcy flow,was underestimated when using a power law expression of mean grain size.The constant B,an empirical value in the classical Ergun equation,typically equals 1.75.The inertial pressure loss in LPMs can be significantly different from it in single lager porous media.For Non-Darcy flow in LPMs,it is necessary to consider a modified larger constant B to improve the accuracy of the Ergun empirical equation. 展开更多
关键词 non-darcy flow Layered porous media HETEROGENEITY forchheimer equation simulations
下载PDF
Experimental Study of Seepage Properties of Non-Darcy Flow in Granular Coal Gangues 被引量:4
3
作者 MIAO Xie-xing LI Shun-cai +1 位作者 HUANG Xian-wu CHEN Zhan-qing 《Journal of China University of Mining and Technology》 EI 2006年第2期105-109,共5页
By using the steady-state seepage method, a patent seepage device together with the MTS815.02 Rock Mechanics Test System is used to test the seepage properties of non-Darcy flow in a granular gangue with five differen... By using the steady-state seepage method, a patent seepage device together with the MTS815.02 Rock Mechanics Test System is used to test the seepage properties of non-Darcy flow in a granular gangue with five different grain sizes during the compaction. The experimental results show that the seepage properties are not only related to the stress or displacement level, but also to the grain size, the pore structure of the granular gangue, and the current porosity The permeability and the non-Darcy flow coefficient can be fitted respectively by the cubic polynomials and the power functions of the porosity, Formally, the flow in granular gangue satisfies the Forchheimer's binomial flow, but under the great axial and confining pressure and owing to the grain's crushing, the flow in granular gangues is different from that in rock-fills which are naturallv oiled un. As a result, the non-Darer flow coefficient may be negative. 展开更多
关键词 granular coal gangue COMPACTION seepage properties Forchhelmer s binomial flow non-darcy flow coefficient
下载PDF
Characteristics of unsteady flow in porous media while considering threshold pressure gradient with Green's function 被引量:2
4
作者 曹仁义 陈岭 +2 位作者 Y.Zee Ma 刘雪莹 于柏慧 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期201-208,共8页
The flow behavior in porous media with threshold pressure gradient(TPG) is more complex than Darcy flow and the equations of motion, and outer boundary and inner boundary with TPG are also different from Darcy flow fo... The flow behavior in porous media with threshold pressure gradient(TPG) is more complex than Darcy flow and the equations of motion, and outer boundary and inner boundary with TPG are also different from Darcy flow for unsteady flow of a producing well in a reservoir. An analytic method to solve this kind of problem is in a need of reestablishment. The classical method of Green's function and Newman product principle in a new way are used to solve the unsteady state flow problems of various shapes of well and reservoir while considering the TPG. Four Green's functions of point, line, band and circle while considering the TPG are achieved. Then, two well models of vertical well and horizontal well are built and simultaneously the function to calculate the moving boundary of each well model is provided. The results show that when considering TPG the pressure field is much different, which has a sudden pressure change, with a moving boundary in it. And the moving boundary of each well model increases with time but slows down rapidly, especially when the TGP is large. 展开更多
关键词 non-darcy flow Green's function moving boundary threshold pressure gradient (TPG)
下载PDF
A numerical study of non-Darcy flow in EGS heat reservoirs during heat extraction 被引量:5
5
作者 Wenjiong CAO Wenbo HUANG +2 位作者 Guoling WEI Yunlong JIN Fangming JIANG 《Frontiers in Energy》 SCIE CSCD 2019年第3期439-449,共11页
Underground non-Darcy fluid flow has been observed and investigated for decades in the petroleum industry. It is deduced by analogy that the fluid flow in enhanced geothermal system (EGS) heat reservoirs may also be i... Underground non-Darcy fluid flow has been observed and investigated for decades in the petroleum industry. It is deduced by analogy that the fluid flow in enhanced geothermal system (EGS) heat reservoirs may also be in the non-Darcy regime under some conditions. In this paper, a transient 3D model was presented, taking into consideration the non-Darcy fluid flow in EGS heat reservoirs, to simulate the EGS long-term heat extraction process. Then, the non-Darcy flow behavior in water- and supercritical CO2 (SCCO2)-based EGSs was simulated and discussed. It is found that non-Darcy effects decrease the mass flow rate of the fluid injected and reduce the heat extraction rate of EGS as a flow resistance in addition to the Darcy resistance which is imposed to the seepage flow in EGS heat reservoirs. Compared with the water-EGS, the SCCO2-EGS are more prone to experiencing much stronger non-Darcy flow due to the much larger mobility of the SCCO2. The non-Darcy flow in SCCO2- EGSs may thus greatly reduce their heat extraction performance. Further, a criterion was analyzed and proposed to judge the onset of the non-Darcy flow in EGS heat reservoirs. The fluid flow rate and the initial thermal state of the reservoir were taken and the characteristic Forchheimer number of an EGS was calculated. If the calculated Forchheimer number is larger than 0.2, the fluid flow in EGS heat reservoirs experiences non-negligible non-Darcy flow characteristic. 展开更多
关键词 enhanced GEOTHERMAL system non-darcy flow HEAT extraction REYNOLDs NUMBER forchheimer NUMBER
原文传递
含水层非线性流研究进展 被引量:2
6
作者 廖梓龙 魏永富 +1 位作者 郭中小 龙胤慧 《水利水电技术》 CSCD 北大核心 2013年第9期119-122,共4页
通过综述非线性流研究的现有成果,指出了研究范围(时空尺度)、建模过程和求解方法是现状研究的难点,探讨了含水层非线性流的未来研究方向。
关键词 非线性流 达西定律 Izbash方程 forchheimer方程
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部