期刊文献+
共找到2,551篇文章
< 1 2 128 >
每页显示 20 50 100
IMPACTS OF DIFFERENT TYPES OF LAND USE ON PROCESSES OF SOIL AND WATER LOSS OVER PURPLE SOIL SLOPELAND 被引量:1
1
作者 Cai Qiangguo \ Wu Shu′an Institute of Geography, CAS, Beijing 100101 People’s Republic of ChinaPeng Yexuan Experimental Station on Soil & Water Conservation, Zigui County, Hubei 443600 People’s Republic of China 《Journal of Geographical Sciences》 SCIE CSCD 1997年第1期71-84,共14页
Based on natural precipitation observations, impacts of different types of land use on processes of soil and water loss over purple soil related slopeland were studied by simulated rainfall experiments. Measurement da... Based on natural precipitation observations, impacts of different types of land use on processes of soil and water loss over purple soil related slopeland were studied by simulated rainfall experiments. Measurement data revealed that rainstorms and slope length are the essential factors accountable for soil and water loss on purple soil slopeland for intense rill erosion can be caused on 10 meter long purple soil slopes by high intensity rainfall. Under circumanstances of rainstorms, annual hedge plants grown on slopeland of 25 degrees can cause a reduction of runoff by 22 43 percent and that of erosion induced sand content by 94 98 percent. Stone bund horizontal terraces can lead to a runoff reduction by 62 67 percent in comparison with steep slopelands and that of erosion induced sediment by 97.8 99 percent. Soil and water loss can be substantially decreased on steep slopes by hedge plants with a cost of only 10 20 percent that of the stone bund horizontal terraces. Hence it is an effective way to control soil and water loss in terms of slopeland amelioration and utilization in the Three Gorges Reservoir Area. 展开更多
关键词 purple soil slopeland land use soil and water loss process.
下载PDF
A policy and technical measures for controlling soil and water loss in the Loess Plateau of China
2
作者 Wu Qinxiao and Li YinchuNorthwestern Institute of Soil and Water Conservation Academia sinica,Shaanxi,China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1990年第2期79-86,共8页
Loess Plateau is the most serious region of soil and water loss in China and the world. The sediment carried into the Yellow River amounts to 1.6 billion tons every year. This paper reviews the factors and reasons for... Loess Plateau is the most serious region of soil and water loss in China and the world. The sediment carried into the Yellow River amounts to 1.6 billion tons every year. This paper reviews the factors and reasons for erosion in this area, and puts forward a comprehensive controlling policy on the basis of the principles of ecology and practise of Chinese scientists for 40 years. In conformity with the policy, a number of technical measures for controlling soil and water loss are suggested. 展开更多
关键词 Loess Plateau soil and water loss controlling policy technical measure.
下载PDF
Impact of slash disposal on soil and water loss and the growth of planted seedlings
3
作者 赵秀海 戚维忠 魏嵩 《Journal of Forestry Research》 CAS CSCD 2000年第3期207-209,共3页
The three methods of slash disposal in this experiment were no treatment, strip piling and burning. The results obtained from this study showed that the soil erosion, water and nutrient loss were higher in the logged ... The three methods of slash disposal in this experiment were no treatment, strip piling and burning. The results obtained from this study showed that the soil erosion, water and nutrient loss were higher in the logged areas by burning than in the logged areas by no treatment and strip piling. The soil and water loss was not serious when the slope degree of the logged area was less than 16o. The survival rate of planted seedlings was higher and the growth was better in the logged areas followed by burning than in the logged areas by no treatment and strip piling. Burning should not be used when the slope was more than 23o. 展开更多
关键词 Slash disposal soil and water loss Seedling growth
下载PDF
Study on Soil and Water Loss Characteristic of the Railway Construction in Mountain Area
4
作者 BAI Ming-zhou~1, XU Zhao-yi~1, HUO Yu-hua~1, DONG Yong~2 (1. School of Civil Engineering and Architecture of Beifing JiaoTong University, Beijing 100044,China 2. Personnel Division of the First Railway Survey & Design Institute, Lanzhou 730000, China) 《地球科学进展》 CAS CSCD 2004年第S1期232-237,共6页
The factor of human project activity is often the immediate cause resulting in soil and water loss. The Baoji-Lanzhou second railway in construction is an example. The soil and water loss law caused by earth and stone... The factor of human project activity is often the immediate cause resulting in soil and water loss. The Baoji-Lanzhou second railway in construction is an example. The soil and water loss law caused by earth and stone mountain railway engineering construction in the northwestern China is studied systematically and that caused possibly by the road bed project, the road moat project, the field project, the tunnel project and the service road project in construction is probed. At the same time, the type, t... 展开更多
关键词 Mountain railway soil and water loss Characteristic.
下载PDF
Risk Assessment and Change Monitoring of Soil and Water Loss in Ruijin City Based on RS and GIS
5
作者 Zhou Peng Wang Li +3 位作者 Xie Wanting Lu Jiangyue Zhang Xiaoxu Xu Wei 《Meteorological and Environmental Research》 CAS 2018年第4期89-93,共5页
The land use information extraction technology for the high-resolution remote sensing images of the Gaofen No. 1 satellite was construc-ted. According to the spectral, band, texture and shape attributes, land use typ... The land use information extraction technology for the high-resolution remote sensing images of the Gaofen No. 1 satellite was construc-ted. According to the spectral, band, texture and shape attributes, land use types were divided, and the changing laws of land use types were ana- lyzed. Aftewards,according to the Table of Grading Standard of Sooil Erosion Intensity(SL190-96),as well as vegetation coverage index NDVI slope, the risks of soil and water loss were assessed. Meanwhile, the level, scale, location and scope of changes in the risks of soil and water loss were monitored by using spatial visualization and spatial statistical techniques. The results showed that the area of areas without soil erosion and moderate soil erosion areas decreased obviously from 2015 to 2017, and the decreases were up to 22.929 3 and 13.626 3 km2 respectively. The ar-ea of mild soil erosion areas increased fast, and the increase reached 31.140 0 km2. The area of extremely strong soil erosion areas increased by 7.267 4 km2. In the city, moderate and strong soil erosion areas reduced, while extremely strong soil erosion patches increased fast, which was mainly related to road construction and construction and development of orchards. The extremely strong soil erosion areas were distributed in the shape of a banded loop, surrounded the suburbs of the city, and shrank towards the center of Ruijin City. The constructed technology to monitor the changes in land use and soil and water loss, as well as the changing laws of land use and soil and water loss provide the theoretical basis and plan-ning basis of soil and water conservation for urban planning departments and soil and water conservation departments. 展开更多
关键词 Land use Change monitoring soil and water loss soil and water conservation
下载PDF
Controlled drainage in the Nile River delta of Egypt:a promising approach for decreasing drainage off-site effects and enhancing yield and water use efficiency of wheat
6
作者 Mohamed K EL-GHANNAM Fatma WASSAR +4 位作者 Sabah MORSY Mohamed HAFEZ Chiter M PARIHAR Kent O BURKEY Ahmed M ABDALLAH 《Journal of Arid Land》 SCIE CSCD 2023年第4期460-476,共17页
North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the neg... North Africa is one of the most regions impacted by water shortage.The implementation of controlled drainage(CD)in the northern Nile River delta of Egypt is one strategy to decrease irrigation,thus alleviating the negative impact of water shortage.This study investigated the impacts of CD at different levels on drainage outflow,water table level,nitrate loss,grain yield,and water use efficiency(WUE)of various wheat cultivars.Two levels of CD,i.e.,0.4 m below the soil surface(CD-0.4)and 0.8 m below the soil surface(CD-0.8),were compared with subsurface free drainage(SFD)at 1.2 m below the soil surface(SFD-1.2).Under each drainage treatment,four wheat cultivars were grown for two growing seasons(November 2018–April 2019 and November 2019–April 2020).Compared with SFD-1.2,CD-0.4 and CD-0.8 decreased irrigation water by 42.0%and 19.9%,drainage outflow by 40.3%and 27.3%,and nitrate loss by 35.3%and 20.8%,respectively.Under CD treatments,plants absorbed a significant portion of their evapotranspiration from shallow groundwater(22.0%and 8.0%for CD-0.4 and CD-0.8,respectively).All wheat cultivars positively responded to CD treatments,and the highest grain yield and straw yield were obtained under CD-0.4 treatment.Using the initial soil salinity as a reference,the soil salinity under CD-0.4 treatment increased two-fold by the end of the second growing season without negative impacts on wheat yield.Modifying the drainage system by raising the outlet elevation and considering shallow groundwater contribution to crop evapotranspiration promoted water-saving and WUE.Different responses could be obtained based on the different plant tolerance to salinity and water stress,crop characteristics,and growth stage.Site-specific soil salinity management practices will be required to avoid soil salinization due to the adoption of long-term shallow groundwater in Egypt and other similar agroecosystems. 展开更多
关键词 drainage ratio nitrate loss water use efficiency YIELD soil salinity Nile River delta
下载PDF
Impacts of water and soil erosion in upstream watershed of Nenjiang River 被引量:2
7
作者 ZHU Dandan MA Yongsheng SHI Qiuyue 《Journal of Northeast Agricultural University(English Edition)》 CAS 2007年第3期283-288,共6页
Making a brief analysis of the water and soil loss present situation in Daxing'anling area which locates to the upstream region of Nenjiang River, and giving the water and soil loss of this area that have been made n... Making a brief analysis of the water and soil loss present situation in Daxing'anling area which locates to the upstream region of Nenjiang River, and giving the water and soil loss of this area that have been made near 20 years, as well as the factors of the water and soil loss. According to the factors corresponding prevention measure and forecast model have been put forward, make a brief introduction to this model in this article. It is helpful to improve the local soil conservation and sustainable development. 展开更多
关键词 upstream region of Nenjiang River water and soil loss water and soil conservation PREDICTION
下载PDF
Soil and water loss in the Lancang River-Mekong River watershed (in Yunnan section, China) and its control measures 被引量:1
8
作者 WANG Hong YAO Li xin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2000年第1期92-99,共8页
MekongRiverisoriginatedinthenorthernrangeofTibetQinghaiPlateauofChina,flowingthroughsixcountries,theyareChina... MekongRiverisoriginatedinthenorthernrangeofTibetQinghaiPlateauofChina,flowingthroughsixcountries,theyareChina(YunnanProvince),M?.. 展开更多
关键词 Lancang River Mekong River watershed (in Yunnan section China) soil and water loss control measures soil erosion mud rock flow LandSLIDE
下载PDF
A Regional-Scale Method of Forecasting Debris Flow Events Based on Water-Soil Coupling Mechanism 被引量:8
9
作者 ZHANG Shao-jie WEI Fang-qiang +2 位作者 LIU Dun-long YANG Hong-juan JIANG Yu-hong 《Journal of Mountain Science》 SCIE CSCD 2014年第6期1531-1542,共12页
A debris flow forecast model based on a water-soil coupling mechanism that takes the debrisflow watershed as a basic forecast unit was established here for the prediction of disasters at the watershed scale.This was a... A debris flow forecast model based on a water-soil coupling mechanism that takes the debrisflow watershed as a basic forecast unit was established here for the prediction of disasters at the watershed scale.This was achieved through advances in our understanding of the formation mechanism of debris flow.To expand the applicable spatial scale of this forecasting model,a method of identifying potential debris flow watersheds was used to locate areas vulnerable to debris flow within a forecast region.Using these watersheds as forecasting units and a prediction method based on the water-soil coupling mechanism,a new forecasting method of debris flow at the regional scale was established.In order to test the prediction ability of this new forecasting method,the Sichuan province,China was selected as a study zone and the large-scale debris flow disasters attributable to heavy rainfall in this region on July 9,2013 were taken as the study case.According to debris flow disaster data on July 9,2013 which were provided by the geo-environmental monitoring station of Sichuan province,there were 252 watersheds in which debris flow events actually occurred.The current model predicted that 265 watersheds were likely to experience a debris flow event.Among these,43 towns including 204 debrisflow watersheds were successfully forecasted and 24 towns including 48 watersheds failed.The false prediction rate and failure prediction rate of thisforecast model were 23% and 19%,respectively.The results show that this method is more accurate and more applicable than traditional methods. 展开更多
关键词 泥石流灾害 预测模型 区域尺度 事件 耦合机理 水土 流域尺度 耦合机制
下载PDF
The Effect of Land Use Change on Soil and Water Quality in Northern Iran 被引量:7
10
作者 KHALEDIAN Yones KIANI Farshad EBRAHIMI Sohaila 《Journal of Mountain Science》 SCIE CSCD 2012年第6期798-816,共19页
Rapid urbanization has led to extensive land-use changes,particularly in developing countries.This research is aimed to investigate the role of land use and its effect on soil and water quality in Ziarat watershed foc... Rapid urbanization has led to extensive land-use changes,particularly in developing countries.This research is aimed to investigate the role of land use and its effect on soil and water quality in Ziarat watershed focusing on four land uses:forest,pasture,cultivated and urban development.Soil samples were taken from a depth of 0-30 cm on each land use and were analyzed by completely randomized split-plot design in two geographical directions.Results showed that bulk density(BD),electrical conductivity(EC),pH,calcium carbonate equivalent(CCE),and soil particle density(DS) of the soil samples in pastures,cultivated and urban areas increased and the mean weight diameter(MWD),soil porosity(F),organic carbons(OC),total nitrogen(TN),exchangeable cations(Ca 2+,Mg 2+,K +,Na +),cation exchange capacity(CEC) and soil microbial respirations(SMR) decreased,respectively in comparison with the forest soils.For water quality evaluations,sodium adsorption ratio(SAR),electrical conductivity(EC),pH,total dissolved solids(TDS),bicarbonate(HCO 3),chloride(Cl),total hardness(TH),calcium(Ca 2+),potassium(K +),sodium(Na +) and magnesium(Mg 2+) were investigated in two areas:Nahrkhoran and Abgir stations.Results showed that the concentration of TDS,EC and HCO 3 in Naharkhoran station is higher than that in Abgir station.On the other hand,the concentration of TDS,EC and HCO 3 in Abgir station are the relatively higher due to its location.Total hardness had the same trend during the study years except in the last three years;however,TH showed an increase of 25% TH in Naharkhoran for the last two years.Cl,K + and SAR in Naharkhoran station increased by 61%,22%,78% and 56% respectively,in comparison with Abgir station.This study demonstrated that the trend of soil degradation and mismanagement of land use may increase the frequency of urban floods and human health problems. 展开更多
关键词 土地利用变化 土壤样品 水质 阳离子交换容量 伊朗 钠吸附比 土地使用管理 森林土壤
下载PDF
Regularity of Erosion and Soil Loss Tolerance in Hilly Red-Earth Region of China 被引量:1
11
作者 SHUI Jian-guo, YE Yuan-lin and LIU Cha-cha(Institute of Soils & Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 , P.R. China Rice Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou 310006 , P.R. China) 《Agricultural Sciences in China》 CAS CSCD 2002年第11期1232-1237,共6页
The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative cove... The observations from 14-yr long-term investigation on the soil-water losses in the sloping red-earth (slope 8°- 15°) showed that soil-water losses were closely correlated with land slope and vegetative coverage. Runoff rate in sloping red-earth could be reduced doubly by exploitation, while the soil erosion was enhanced doubly during the first two years after exploitation. Subsequently, it tended to be stable. Soil erosion was highly positively correlated with land slope, i. e. soil erosion increased by 120 t km-2 yr-1 with a slope increase of 1°. On the contrary, soil erosion was highly negatively correlated with vegetative coverage, i. e. soil erosion was limited at 200 t km-2 yr-1 below as the vegetative coverage exceeded 60%. Furthermore, soil erosion was highly related with planting patterns, i. e. soil erosion in contour cropping pattern would be one sixth of that in straight cropping. Based on the view of soil nutrient balance and test data, it was first suggested that the soil loss tolerance in Q2 red clay derived red-earth should be lower than 300 t km-2 yr-1. 展开更多
关键词 soil-water losses Runoff coefficient Vegetative coverage soil loss tolerance Hilly red-earth region.
下载PDF
Application of Temporary Technology for Soil and Water Conservation in Crop Protection
12
作者 Yu Sihang Yan Mengqing Zheng Xian 《Meteorological and Environmental Research》 CAS 2015年第4期18-20,共3页
The increasing of highway engineering construction makes soil and water loss surrounding highway and also influences the growth of crops around, To control soil and water loss, new engineering measures are put forward... The increasing of highway engineering construction makes soil and water loss surrounding highway and also influences the growth of crops around, To control soil and water loss, new engineering measures are put forward to protect soil and water and prevent crops from being damaged. 展开更多
关键词 soil and water loss Temporary soil and water conservation Crop protection China
下载PDF
Model test of the influence of cyclic water level fluctuations on a landslide 被引量:5
13
作者 HE Chun-can HU Xin-li +3 位作者 XU Chu WU Shuang-shuang ZHANG Han LIU Chang 《Journal of Mountain Science》 SCIE CSCD 2020年第1期191-202,共12页
Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorge... Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well. 展开更多
关键词 Reservoir landslide Cyclic water level fluctuations Physical model test Landslide soil loss Adaptive ability
下载PDF
Study of Spatial and Temporal Processes of Soil Erosion on Sloping Land Using Rare Earth Elements As Tracers 被引量:3
14
作者 薛亚洲 刘普灵 +1 位作者 杨明义 琚彤军 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第5期707-713,共7页
Rare earth elements (REE) were used to study the temporal and spatial processes of soil erosion from different depths and sections of a slope. Two simulated rainfall events were applied to a prepared plot with a slope... Rare earth elements (REE) were used to study the temporal and spatial processes of soil erosion from different depths and sections of a slope. Two simulated rainfall events were applied to a prepared plot with a slope of 22°. The total runoff and sediment yield were collected every minute during the rainfall events. During the first twenty minutes of the first rainfall event, the average rate of rill erosion and the accumulated sediment yield due to rill erosion was 0.5 and 0.3 times higher than for sheet erosion. During this time, most of the erosion occurred on the lower one third of the plot. After 20 min, rill erosion became the dominant process on the slope. The average acceleration in the rate of rill erosion, the rate of rill erosion and the accumulated sediment yield due to rill erosion were 42, 6 and 4 times higher than that of sheet erosion, respectively. During the first 35 minutes of the second rainfall event, the average acceleration in the rate of rill erosion was 6~9 times higher than that of sheet erosion. Afterwards, the slope became nearly stable with little change in either rill or sheet erosion rates. Initially, most of the rill erosion occurred in the lower third of the slope but later the preexisting rillhead in the middle section of the slope became reactivated and erosion in this section of the slope increased rapidly. These results indicate that REE tracer technology is a valuable tool for quantifying spatial and temporal changes in erosion from a soil slope. 展开更多
关键词 soil and water loss erosion process REE tracer technology slope land erosion rare earths
下载PDF
Soil nutrient loss due to tuber crop harvesting and its environmental impact in the North China Plain 被引量:2
15
作者 YU Han-qing LI Yong +3 位作者 ZHOU Na Adrian Chappell LI Xiao-yu Jean Poesen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第7期1612-1624,共13页
Soil loss due to crop harvesting (SLCH) is a soil erosion process that signiifcantly contributes to soil degradation in crop-lands. However, little is known about soil nutrient losses caused by SLCH and its environm... Soil loss due to crop harvesting (SLCH) is a soil erosion process that signiifcantly contributes to soil degradation in crop-lands. However, little is known about soil nutrient losses caused by SLCH and its environmental impacts. In the North China Plain area, we measured the losses of soil organic carbon (SOC) and nitrogen as wel as phosphorus due to SLCH and assessed their relationship with soil particle size composition, agronomic practices and soil moisture content. Our results show that the losses by harvesting potato of SOC, total nitrogen (TN), available nitrogen (AN), available phosphorus (AP) and total phosphorus (TP) were 1.7, 1.8, 1.8, 15.9 and 14.1 times compared by harvesting sweet potato, respectively. The variation of SOC, N and P loss by SLCH are mainly explained by the variation of plant density (PD) (17–50%), net mass of an individual tuber (Mcrop/p) (16–74%), soil clay content (34–70%) and water content (19–46%). Taking into account the current sewage treatment system and the ratio of the nutrients adhering to the tubers during transportation from the ifeld (NTRP/SP), the loss of TN and TP by harvesting of potato and sweet potato in the North China Plain area amounts to 3% N and 20% P loads in the water bodies of this region. The fate of the exported N and P in the sewage treatment system ultimately controls the contribution of N and P to the polution of lakes and rivers. Our results suggest that a large amount of SLCH-induced soil nutrient export during transportation from the ifeld is a potential polutant source for agricultural water for vast planting areas of tuber crops in China, and should not be overlooked. 展开更多
关键词 soil nutrient losses POTATO sweet potato crop harvesting water polution
下载PDF
Impact of Different Contour Hedgerows on Runoff,Nutrient and Soil on Sloping Farmland in Danjiangkou Reservoir Region of China 被引量:2
16
作者 Zefang LU Qinghua CHEN Tao JIN 《Asian Agricultural Research》 2021年第1期58-63,共6页
Soil and water loss has been a major environmental problem in the Danjiangkou Reservoir Region.A study of 14°sloping farmland was performed on impact of different contour hedgerows on runoff,losses of soil and nu... Soil and water loss has been a major environmental problem in the Danjiangkou Reservoir Region.A study of 14°sloping farmland was performed on impact of different contour hedgerows on runoff,losses of soil and nutrients during 2008 and 2011,with five treatments and three replications.The winter wheat and summer maize were used as the test crops.Treatments consisted of four hedgerows:Amorpha(Amorpha fruticosa L.),Honeysuckle(Lonicera japonica Thunb.),Day-lily flower(Hemerocallis citrina Baroni.),and Sabaigrass(Eulaliopsis binata),and a control without hedgerow.Result showed that the runoff under the control treatment was much higher than that of hedgerows.Amorpha could reduce the runoff by 35.2%compared with the control.Soil losses in four hedgerows showed significant reduction in four years(e.g.,Amorpha:78.3%;Honeysuckle:77.1%).Nutrient losses in winter were much higher than that in summer,especially total nitrogen,total phosphorus and total potassium,even though there was an abundant precipitation in summer.Hedgerows greatly affected the soil and nutrient losses on slopping farmland compared with the control treatment,especially Amorpha treatment.The present study found that the Amorpha could be used as the hedgerow species for reducing soil and water loss in the Danjiangkou Reservoir Region. 展开更多
关键词 Contour hedgerow soil and water loss Nutrient loss Sloping farmland Danjiangkou Reservoir Region
下载PDF
Construction of Forecast and Early Warning System of Meteorological and Geological Disasters in Qinghai Province 被引量:1
17
作者 Qingping LI Qin GUAN +2 位作者 Aijuan BAI Jinhai LI Yujun ZHU 《Meteorological and Environmental Research》 CAS 2022年第3期49-55,共7页
Based on the meteorological and geological disaster data, ground observation data set, CLDAS grid point data set, and EC, BJ and other model product data during 2008-2020, the temporal and spatial distribution charact... Based on the meteorological and geological disaster data, ground observation data set, CLDAS grid point data set, and EC, BJ and other model product data during 2008-2020, the temporal and spatial distribution characteristics of meteorological and geological disasters and precipitation were analyzed, and the causes of the occurrence of meteorological geological disasters and the deviation of model precipitation forecast were revealed. Besides, an objective precipitation forecast system and a forecast and early warning system of meteorological and geological disasters were established. The results show that meteorological and geological disasters and precipitation were mainly concentrated from May to October, of which continuous precipitation appeared frequently in June and September, and convective precipitation was mainly distributed in July-August;the occurrence frequency of meteorological and geological disasters was basically consistent with the distribution of accumulated precipitation and short-term heavy precipitation, and they were mainly concentrated in the southern and eastern parts of Qinghai. Meteorological and geological disasters were basically caused by heavy rain and above, and meteorological and geological disasters were divided into three types: continuous precipitation(type I), short-term heavy precipitation(type II) and mixed precipitation(type III). For type I, the early warning conditions of meteorological and geological disasters in Qinghai are as follows: if the soil volumetric water content difference between 0-10 and 10-40 cm is ≤0.03 mm^(3)/mm^(3), or the soil volumetric water content at one of the depths is ≥0.25 mm^(3)/mm^(3), the future effective precipitation reaches 8.4 mm in 1 h, 10.2 mm in 2 h, 11.5 mm in 3 h, 14.2 mm in 6 h, 17.7 mm in 12 h, and 18.2 mm in 24 h, and such warning conditions are mainly used in Yushu, Guoluo, southern Hainan, southern Huangnan and other places. For type II, when the future effective precipitation is up to 11.5 mm in 1 h, 14.9 mm in 2 h, 16.2 mm in 3 h, 19.9 mm in 6 h, 25.3 mm in 12 h, and 26.3 mm in 24 h, such precipitation thresholds are mainly used in Hainan, Huangnan, and eastern Guoluo;as it is up to 13.3 mm in 1 h, 15.5 mm in 2 h, 16.6 mm in 3 h, 19.9 mm in 6 h, 31.1 mm in 12 h, and 34.0 mm in 24 h, such precipitation thresholds are mainly used in Hehuang valley. The precipitation thresholds of type III are between type I and type II, and closer to that of type II;such precipitation thresholds are mainly used in Hainan, Huangnan, and northern Guoluo. The forecasting ability of global models for heavy rain and above was not as good as that of mesoscale numerical prediction model, and global models had a wet bias for small-scale precipitation and a dry bias for large-scale precipitation;meso-scale models had a significantly larger precipitation bias. The forecast ability of precipitation objective forecast system constructed by frequency matching and multi-model integration has improved. At the same time, the constructed grid forecast and early warning system of meteorological and geological disasters is more precise and accurate, and is of instructive significance for the forecast and early warning of meteorological and geological disasters. 展开更多
关键词 Meteorological and geological disasters Precipitation threshold soil volumetric water content Continuous precipitation Short-term heavy precipitation forecast and early warning
下载PDF
Effect of potassium on soil conservation and productivity of maize/cowpea based crop rotations in the north-west Indian Himalayas 被引量:2
18
作者 Birendra Nath GHOSH Om Pal Singh KHOLA +2 位作者 Ranjan BHATTACHARYYA Kuldeep Singh DADHWAL Prasant Kumar MISHRA 《Journal of Mountain Science》 SCIE CSCD 2016年第4期754-762,共9页
Plots under conservation tillage may require higher amount of potassium(K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or l... Plots under conservation tillage may require higher amount of potassium(K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or long-term period. To test this hypothesis, a field experiment was performed in 2002-2003 and 2006-2007 to study the effect of K and several crop rotations on yield, water productivity, carbon sequestration, grain quality, soil K status and economic benefits derived in maize(Zea mays L)/cowpea(Vigna sinensis L.) based cropping system under minimum tillage(MT). All crops recorded higher grain yield with a higher dose of K(120 kg K2 O ha-1) than recommended K(40 kg K2 O ha-1). The five years' average yield data showed that higher K application(120 kg K2 O ha-1) produced 16.4%(P<0.05)more maize equivalent yield. Cowpea based rotation yielded 14.2%(P<0.05) higher production than maize based rotation. The maximum enhancement was found in cowpea-mustard rotation. Relationship between yield and sustainable indices revealed that only agronomic efficiency of fertilizer input was significantly correlated with yield. Similarly, higherdoses of K application not only increased the water use efficiency(WUE) of all crops, but also reduced runoff and soil loss by 16.5% and 15.8% under maize and 23.3% and 19.7% under cowpea cover, respectively. This study also revealed that on an average 16.5% of left over carbon input contributed to soil organic carbon(SOC). Here, cowpea based rotation with the higher K application increased carbon sequestration in soil. Potassium fertilization also significantly improved the nutritional value of harvested grain by increasing the protein content for maize(by 9.5%) and cowpea(by 10.6%). The oil content in mustard increased by 5.0% and 6.0% after maize and cowpea, respectively. Net return also increased with the application of the higher K than recommended K and the trend was similar to yield. Hence, the present study demonstrated the potential yield and profit gains along with resource conservation in the Indian Himalayas due to annual additions of higher amount of K than the recommended dose. The impact of high K application was maximum in the cowpea-mustard rotation. 展开更多
关键词 土壤钾素状况 玉米产量 喜马拉雅山 作物轮作 土壤保护 生产力 豇豆 印度
下载PDF
Integrated Prevention and Control System for Soil Erosion in Typical Black Soil Region of Northeast China 被引量:1
19
作者 SUN Li-ying CAI Qiang-guo +1 位作者 CHEN Sheng-yong HE Ji-jun 《Asian Agricultural Research》 2012年第12期102-107,共6页
The black soil region of Northeast China is one of the most important food production bases and commodity grain bases in China. However, the continual loss and degradation of precious black soil resources has led to d... The black soil region of Northeast China is one of the most important food production bases and commodity grain bases in China. However, the continual loss and degradation of precious black soil resources has led to direct threats to national food security and regional sustainable development. Therefore, it is necessary to summarize integrated prevention and control experience of small watersheds in black soil region of Northeast China. Tongshuang small watershed, a typical watershed in rolling hills of typical black soil areas in Northeast China, is selected as the study area. Based on nearly 50 years' experience in prevention and control of soil and water loss, the structures and overall benefits of an integrated prevention and control system for soil and water loss are investigated. Then, the 'three defense lines' tri-dimensional protection system with reasonable allocation of different types of soil and water control measures from the hill top to gully is systematically analyzed. The first line on the top hill can weaken and block uphill runoff and sediment, hold water resources and improve soil property. The second line on the hill can truncate slope length, slow down the runoff velocity and reduce erosion energy. The third line in the gully is mainly composed of waterfall engineering, which can inhibit soil erosion and restore land resources. The 'three defense lines' system is feasible for soil and water loss control of small watersheds in the typical black soil region of Northeast China. Through the application of the in Tongshuang small watershed, There are effective improvements in ecological conditions in Tongshuang small watershed after the application of 'three defense lines' soil and water control system. Moreover, the integrated treatment paradigm for soil and water loss in typical black soil region is compared with that in loess region. The results of this study could offer references and experiences for other small watersheds in typical black soil region of Northeast China. 展开更多
关键词 TYPICAL BLACK soil REGION Small waterSHED soil and
下载PDF
Evaluating soil erosion by water in a small alpine catchment in Northern Italy: comparison of empirical models
20
作者 Francesca Berteni Stefano Barontini Giovanna Grossi 《Acta Geochimica》 EI CAS CSCD 2021年第4期507-524,共18页
To quantify water erosion rates and annual soil loss in mountainous areas,two different empirical models were used to estimate the effects of soil erosion in a small mountain basin,the Guerna Creek watershed,located i... To quantify water erosion rates and annual soil loss in mountainous areas,two different empirical models were used to estimate the effects of soil erosion in a small mountain basin,the Guerna Creek watershed,located in the Central Southern Alps(Northern Italy).These two models,Revised Universal Soil Loss Equation(RUSLE) and Erosion Potential Model(EPM),were implemented in a Geographical Information System,accounting for the geographical,geomorphological,and weather-climate parameters,which are fundamental to evaluating the intensity and variability of the erosive processes.Soil characterization was supported by laboratory analysis.The results(computed soil loss of 87 t/ha/year and 11.1 m^(3)/ha/year,using RUSLE equation and EPM method,respectively,and sediment yield of 7.5 m^(3)/ha/year using EPM method) were compared to other studies reported in the literature for different case studies with similar topographic and climatic features,as well as to those provided by the European Soil Data Centre(ESDAC).In both cases,the agreement was satisfactory,showing consistency of the adopted procedures to the parametrization of the physical processes. 展开更多
关键词 water erosion Alpine hydrology EPM RUSLE soil loss Ungauged basin
下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部