期刊文献+
共找到204篇文章
< 1 2 11 >
每页显示 20 50 100
Determination of soybean yield gap and potential production in Iran using modeling approach and GIS 被引量:2
1
作者 Alireza NEHBANDANI Afshin SOLTANI +2 位作者 Ali RAHEMI-KARIZAKI Amir DADRASI Faranak NOURBAKHSH 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期395-407,共13页
Increasing crop production is necessary to maintain food security for the growing global population.Reducing the gap between actual and potential yield is one of the important ways to increase yield per unit area.Pote... Increasing crop production is necessary to maintain food security for the growing global population.Reducing the gap between actual and potential yield is one of the important ways to increase yield per unit area.Potential yield and the yield gap of soybean were determined for Golestan Province,Iran,using Soybean Simulation Model (SSM-i Crop2) and Geographical Information System (GIS).Information from 24 weather stations and soil data of the region were used.Yield gap and production gap were calculated at county and province levels.The average actual yield of soybean in this province was2.28 t ha^(–1) while the province’s potential yield was 4.73 t ha^(–1),so the yield gap was estimated 2.44 t ha^(–1).Thus,there is a great potential for increasing soybean yield in Golestan,which is possible through improving crop management of soybean in farmers’fields.The average water productivity of soybean was estimated to be 0.81 kg m^(–3).Spatial distribution of water productivity in soybean farms showed that the highest and the lowest water productivities (0.99 and 0.44 kg m^(–3)) were in western and eastern regions of the province,respectively,in accordance to vapour pressure deficit.It was concluded that soybean production in the province could increase by 66%(from 109 970 to 182 170 tons) if 80% of the current yield gap could be removed. 展开更多
关键词 crop area OILSEED production gap SOYBEAN yield gap
下载PDF
Evaluation of the Effect of Agricultural Management on Energy Yield and Greenhouse Gas Emission Reduction of Bioenergy Production Chains
2
作者 Sjaak Conijn Wim Corré +1 位作者 Hans Langeveld Jacques Davies 《Natural Resources》 2014年第7期322-335,共14页
The role of energy crops in reducing fossil energy use and greenhouse gas emission is much debated. To improve decision making on the use of crops for producing bioenergy, a tool (Energy Crop Simulation Model or E-CRO... The role of energy crops in reducing fossil energy use and greenhouse gas emission is much debated. To improve decision making on the use of crops for producing bioenergy, a tool (Energy Crop Simulation Model or E-CROP) has been developed to calculate 1) sustainable crop dry matter yield levels as function of agricultural inputs, and 2) gross and net energy yield and greenhouse gas emission reduction, covering the entire bioenergy production chain from sowing to distribution of bioenergy. E-CROP can be applied to a wide range of crops, soils, climatic conditions, management choices, and conversion technologies. This paper describes E-CROP and focuses on its application on four arable crops, as cultivated on two contrasting sites in the Netherlands (potato and sugar beet for bioethanol, winter oilseed rape for biodiesel and silage maize for bioelectricity) and on the effect of crop management (viz. irrigation and nitrogen fertilisation). In all situations, gross energy output exceeded total energy input. Calculated for an average situation, net energy yield ranged from 45 to 140 GJ.ha-1. Lowering irrigation and/or fertilisation input levels generally resulted in a reduction of net energy yields. The net reduction of greenhouse gas emissions in the average situation ranged from 0.60 to 6.5 t CO2-eq.ha-1. In general, N2O emission from nitrogen fertiliser caused large variations in the net reduction of greenhouse gas emission, which even became negative in some situations. Lowering nitrogen fertilisation to levels that are suboptimal for net energy yields enhanced the net reduction in greenhouse gas emission, implicating that both goals cannot be optimised simultaneously. Agricultural knowledge is important for optimising the outputs of bioenergy production chains. 展开更多
关键词 ENERGY crops BIODIESEL BIOETHANOL BIOELECTRICITY Sustainable production ENERGY yield GREENHOUSE Gas Emission
下载PDF
Growth simulation and yield prediction for perennial jujube fruit tree by integrating age into the WOFOST model 被引量:7
3
作者 BAI Tie-cheng WANG Tao +2 位作者 ZHANG Nan-nan CHEN You-qi Benoit MERCATORIS 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第3期721-734,共14页
Mathematical models have been widely employed for the simulation of growth dynamics of annual crops,thereby performing yield prediction,but not for fruit tree species such as jujube tree(Zizyphus jujuba).The objective... Mathematical models have been widely employed for the simulation of growth dynamics of annual crops,thereby performing yield prediction,but not for fruit tree species such as jujube tree(Zizyphus jujuba).The objectives of this study were to investigate the potential use of a modified WOFOST model for predicting jujube yield by introducing tree age as a key parameter.The model was established using data collected from dedicated field experiments performed in 2016-2018.Simulated growth dynamics of dry weights of leaves,stems,fruits,total biomass and leaf area index(LAI) agreed well with measured values,showing root mean square error(RMSE) values of 0.143,0.333,0.366,0.624 t ha^-1 and 0.19,and R2 values of 0.947,0.976,0.985,0.986 and 0.95,respectively.Simulated phenological development stages for emergence,anthesis and maturity were 2,3 and 3 days earlier than the observed values,respectively.In addition,in order to predict the yields of trees with different ages,the weight of new organs(initial buds and roots) in each growing season was introduced as the initial total dry weight(TDWI),which was calculated as averaged,fitted and optimized values of trees with the same age.The results showed the evolution of the simulated LAI and yields profiled in response to the changes in TDWI.The modelling performance was significantly improved when it considered TDWI integrated with tree age,showing good global(R2≥0.856,RMSE≤0.68 t ha^-1) and local accuracies(mean R2≥0.43,RMSE≤0.70 t ha^-1).Furthermore,the optimized TDWI exhibited the highest precision,with globally validated R2 of 0.891 and RMSE of 0.591 t ha^-1,and local mean R2 of 0.57 and RMSE of 0.66 t ha^-1,respectively.The proposed model was not only verified with the confidence to accurately predict yields of jujube,but it can also provide a fundamental strategy for simulating the growth of other fruit trees. 展开更多
关键词 fruit tree growth simulation yield forecasting crop model tree age
下载PDF
Influence of Crop Nutrition on Grain Yield,Seed Quality and Water Productivity under Two Rice Cultivation Systems
4
作者 Y.V.SINGH K.K.SINGH S.K.SHARMA 《Rice science》 SCIE 2013年第2期129-138,共10页
The system of rice intensification (SRI) is reported to have advantages like lower seed requirement,less pest attack,shorter crop duration,higher water use efficiency and the ability to withstand higher degree of mo... The system of rice intensification (SRI) is reported to have advantages like lower seed requirement,less pest attack,shorter crop duration,higher water use efficiency and the ability to withstand higher degree of moisture stress than traditional method of rice cultivation.With this background,SRI was compared with traditional transplanting technique at Indian Agricultural Research Institute,New Delhi,India during two wet seasons (2009-2011).In the experiment laid out in a factorial randomized block design,two methods of rice cultivation [conventional transplanting (CT) and SRI] and two rice varieties (Pusa Basmati 1 and Pusa 44) were used under seven crop nutrition treatments,viz.T 1,120 kg/hm2 N,26.2 kg/hm2 P and 33 kg/hm2 K;T 2,20 t/hm2 farmyard manure (FYM);T 3,10 t/hm2 FYM+ 60 kg/hm2 N;T 4,5 t/hm2 FYM+ 90 kg/hm2 N;T 5,5 t/hm2 FYM+ 60 kg/hm2 N+ 1.5 kg/hm2 blue green algae (BGA);T 6,5 t/hm2 FYM+ 60 kg/hm2 N+ 1.0 t/hm2 Azolla,and T 7,N 0 P 0 K 0 (control,no NPK application) to study the effect on seed quality,yield and water use.In SRI,soil was kept at saturated moisture condition throughout vegetative phase and thin layer of water (2-3 cm) was maintained during the reproductive phase of rice,however,in CT,standing water was maintained in crop growing season.Results revealed that CT and SRI gave statistically at par grain yield but straw yield was significantly higher in CT as compared to SRI.Seed quality was superior in SRI as compared to CT.Integrated nutrient management (INM) resulted in higher plant height with longer leaves than chemical fertilizer alone in both the rice varieties.Grain yield attributes such as number of effective tillers per hill,panicle length and panicle weight of rice in both the varieties were significantly higher in INM as compared to chemical fertilizer alone.Grain yields of both the varieties were the highest in INM followed by the recommended doses of chemical fertilizer.The grain yield and its attributes of Pusa 44 were significantly higher than those of Pusa Basmati 1.The seed quality parameters like germination rate and vigor index as well as N uptake and soil organic carbon content were higher in INM than those in chemical fertilizer alone.CT rice used higher amount of water than SRI,with water saving of 37.6% to 34.5% in SRI.Significantly higher water productivity was recorded in SRI as compared to CT rice. 展开更多
关键词 RICE crop nutrition grain yield seed quality system of rice intensification water productivity
下载PDF
Evaluating the Intercropping of Millet with Cowpea for Forage Yield and Quality
5
作者 Naveed Islam Muhammad Shahid Ibni Zamir +4 位作者 Shan Mohi Ud Din Umer Farooq Haseeb Arshad Aqib Bilal Muhammad Talha Sajjad 《American Journal of Plant Sciences》 2018年第9期1781-1793,共13页
A field study was scheduled to estimate the impact of intercropping of pearl millet with cowpea on forage yield and quality at Agronomy Research Farm, University of Agriculture, Faisalabad. It was done in kharif seaso... A field study was scheduled to estimate the impact of intercropping of pearl millet with cowpea on forage yield and quality at Agronomy Research Farm, University of Agriculture, Faisalabad. It was done in kharif season 2016. Randomized complete block design was used to conduct this experiment. It has three replications. The size of net plot is 3.6 m × 6 m. It comprised of five treatments (T1 = one row of millet alternating with one row of cowpea (1M:1C), T2 = two rows of millet alternating with one row of cowpea (2M:1C), T3 = one row of millet alternating with two rows of cowpea (1M:2C), T4 = sole millet, T5 = sole cowpea). We found that intercropping significantly effected the yield and quality of forage. Intercropping system had significant effects on nutritive value of forage crop. Within various treatments of intercropping, it is evident that treatment T2 (two rows of millet alternating with one row of cowpea) gives maximum total dry matter yield (9.68 t ha-1). It was then tracked by treatment T1 (one row of millet alternating with one row of cowpea) and treatment T3 (one row of millet alternating with two rows of cowpea) producing dry matter yield (9.07 t ha-1 and 8.33 t ha-1, respectively). Based on high grain and suitable environmental condition, intercrop productivity compared to sole crop could be selected for improving the productivity of millet/cowpea mixture in the Punjab. 展开更多
关键词 INTERCROPPING FORAGE Quality yield CROP Productivity
下载PDF
Study on Growth Monitoring and Yield Prediction of Winter Wheat in the South of Shanxi Province Based on MERSI Data and ALMANAC Crop Model
6
作者 Dong Xiang Shuying Bai +2 位作者 Xiaonan Mi Yongqiang Zhao Mengwei Li 《Journal of Geoscience and Environment Protection》 2019年第9期1-10,共10页
Accurate crop growth monitoring and yield forecasting have important implications for food security and agricultural macro-control. Crop simulation and satellite remote sensing have their own advantages, combining the... Accurate crop growth monitoring and yield forecasting have important implications for food security and agricultural macro-control. Crop simulation and satellite remote sensing have their own advantages, combining the two can improve the real-time mechanism and accuracy of agricultural monitoring and evaluation. The research is based on the MERSI data carried by China’s new generation Fengyun-3 meteorological satellite, combined with the US ALMANAC crop model, established the NDVI-LAI model and realized the acquisition of LAI data from point to surface. Because of the principle of the relationship between the morphological changes of LAI curve and the growth of crops, an index that can be used to determine the growth of crops is established to realize real-time, dynamic and wide-scale monitoring of winter wheat growth. At the same time, the index was used to select the different key growth stages of winter wheat for yield estimation. The results showed that the relative error of total yield during the filling period was low, nearly 5%. The research results show that the combination of domestic meteorological satellite Fengyun-3 and ALMANAC crop model for crop growth monitoring and yield estimation is feasible, and further expands the application range of domestic satellites. 展开更多
关键词 FY-3 Satellite ALMANAC CROP Model Winter Wheat forecast yield
下载PDF
Influence of Seed Priming on Performance and Water Productivity of Direct Seeded Rice in Alternating Wetting and Drying 被引量:5
7
作者 Hafeez Ur REHMAN Muhammad KAMRAN +2 位作者 Shahzad Maqsood Ahmed BASRA Irfan AFZAL Muhammad FAROOQ 《Rice science》 SCIE CSCD 2015年第4期189-196,共8页
Direct seeded rice is promising alternative to traditional transplanting, but requires appropriate crop and water management to maintain yield performance and achieve high water productivity. Present study evaluated t... Direct seeded rice is promising alternative to traditional transplanting, but requires appropriate crop and water management to maintain yield performance and achieve high water productivity. Present study evaluated the effect of seed priming and irrigation on crop establishment, tillering, agronomic traits, paddy yield, grain quality and water productivity of direct seeded rice in alternate wetting and drying (DSR-AWD) in comparison with direct seeded rice at field capacity (DSR- FC). Seed priming treatments were osmo-priming with KCI (2.2%), CaCI2 (2.2%) and moringa leaf extracts (MLE, 3.3%) including hydro-priming as control. Among the treatments, seed osmo-primed with MLE emerged earlier and had higher final emergence, followed by osmo-priming with CaCI2. Tillering emergence rate and number of tillers per plant were the highest for seed priming with CaCI2 in DSR- AWD. Total productive and non-productive tillers, panicle length, biological and grain yields, harvest index were highest for seed priming with MLE or CaCI2 in DSR-AWD. Similarly, grain quality, estimated in terms of normal grains, abortive and chalky grains, was also the highest in DSR-AWD with MLE osmo-priming. Benefit cost ratio and water productivity was also the highest in DSR-AWD for seed priming with MLE. In conclusion, seed priming with MLE or CaCI2 can be successfully employed to improve the direct seeded rice performance when practiced with alternate wetting and drying irrigation. 展开更多
关键词 crop establishment grain filling rate seed priming water productivity yield direct seededrice alternating wetting and drying grain quality
下载PDF
Management of rice straw with relay cropping of Chinese milk vetch improved double-rice cropping system production in southern China 被引量:3
8
作者 ZHOU Xing LIAO Yu-lin +4 位作者 LU Yan-hong Robert MREES CAO Wei-dong NIE Jun LI Mei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第8期2103-2115,共13页
Improved utilization of rice(Oryza sativa L.)straw and Chinese milk vetch(Astragalus sinicus L.,vetch)has positive effects on rice production.So far,few studies have investigated the productivity of vetch under differ... Improved utilization of rice(Oryza sativa L.)straw and Chinese milk vetch(Astragalus sinicus L.,vetch)has positive effects on rice production.So far,few studies have investigated the productivity of vetch under different residue management practices in double-rice cropping system.The effects of rice straw on the growth and nutrient accumulation of vetch across seven years(2011–2017)and the subsequent effects of rice straw and vetch on two succeeding rice crops in a vetch–rice–rice cropping system,with the vetch established by relay cropping,were examined.The seven-year double-rice experiment consisted of the following treatments:(1)100%chemical fertilizer(F-F100);(2)only vetch without chemical fertilizer(M-Con);(3)80%chemical fertilizer plus vetch plus a low-cutting height(low-retained stubble)with the removal of straw(M-F80);(4)80%chemical fertilizer plus vetch plus a low-cutting height with the retention of straw(M-F80-LR);(5)80%chemical fertilizer plus vetch plus a high-cutting height(high-retained stubble)with the retention of straw(M-F80-HR);and(6)no fertilizer(F-Con).The yields of the two rice crops after vetch were not affected by either the cutting height of stubble with retention of straw or by the management of straw(retention vs.removal)with low-cutting height of stubble.The yields of the two rice crops after vetch were significantly higher for M-F80-HR than for M-F80-LR,but the relative contributions of the high-cutting height and straw retention to the higher rice yield could not be determined in this study.The yield stability of the double-rice grain in M-F80-HR was also increased,as determined by a sustainable yield index.Significant increases in vetch biomass and nutrient uptake were observed in the fertilized treatments during the rice season compared with the unfertilized treatments.In M-F80-HR plots,improvements in the growing environment of the vetch by conserving soil water content were associated with the highest vetch biomass,nutrient uptake,and yield stability of vetch biomass.These increased nutrient inputs partially replaced the demand for chemical fertilizer and stimulated the rice yields.It can be concluded that retaining higher-cutting stubble residues with straw retention could be the best straw management practice for increasing the vetch biomass and nutrient use efficiency,thereby allowing utilization of high-cutting height with retention of straw and vetch to improve the stability of rice productivity in a double-rice cropping system. 展开更多
关键词 double-rice cropping system Chinese milk vetch biomass productivity rice straw sustainable yield index
下载PDF
Assessment of the contribution percentage of inherent soil productivity of cultivated land in China
9
作者 WANG Shi-chao WANG Jin-zhou +4 位作者 ZHAO Ya-wen REN Yi XU Ming-gang ZHANG Shu-xiang LU Chang-ai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第11期2619-2627,共9页
The contribution percentage of inherent soil productivity(CPISP)refers to the ratio of crop yields under no-fertilization versus under conventional fertilization with the same field management.CPISP is a comprehensive... The contribution percentage of inherent soil productivity(CPISP)refers to the ratio of crop yields under no-fertilization versus under conventional fertilization with the same field management.CPISP is a comprehensive measure of soil fertility.This study used 1086 on-farm trials(from 1984-2013)and 27 long-term field experiments(from 1979-2013)to quantify changes in CPISP.Here,we present CPISP3 values,which reflect the CPISP states during the first three years after site establishment,for a series of sites at different locations in China collected in 1984-1990(the 1980s),1996-2000(the 1990s),and 2004-2013(the 2000s).The results showed that the average CPISP3 value for three crops(wheat,rice,and maize)was 53.8%.Historically,the CPISP3 in the 1990s(57.5%)was much higher than those in the 1980s(50.3%),and the 2000s(52.0%)(P≤0.05).Long-term no-fertilization caused CPISP levels to gradually decline and then stabilize;for example,in a mono-cropping system with irrigation,the CPISP values in Northwest and Northeast China declined by 4.5 and 4.0%,respectively,each year for the first ten years,but subsequently,the CPISP values stabilized.In contrast,the CPISP for upland crops in double-cropping systems continued to decrease at a rate of 1.1%per year.The CPISP for upland-paddy cropping decreased very slowly(0.07%per year),whereas the CPISP for paddy cropping decreased sharply(3.1%per year,on average)for the first two years and then remained steady during the following years.Therefore,upland crops in double-cropping systems consume the most inherent soil productivity,whereas paddy fields are favourable for maintaining a high level of CPISP.Overall,our results demonstrate a need to further improve China’s CPISP3 values to meet growing productivity demands. 展开更多
关键词 CROP yield inherent soil PRODUCTIVITY TYPICAL CROPPING system PLANTING years cropspecies
下载PDF
Dynamic evaluation of land productivity in China
10
作者 Rui Yu Xiangzheng Deng +1 位作者 Zhe Yan Chenchen Shi 《Chinese Journal of Population,Resources and Environment》 2013年第3期253-260,共8页
For making rational and scientific land-use planning,an inventory indicator of land productivity subject to biophysical limitations and human disturbance is required.This study introduces agricultural land productivit... For making rational and scientific land-use planning,an inventory indicator of land productivity subject to biophysical limitations and human disturbance is required.This study introduces agricultural land productivity(ALP)as the dynamic indicator to measure land productivity,involving factors that affect agricultural production,such as characteristics of climate,soil,and terrain.As a case study of this dynamic indicator,ALP was estimated at county level and aggregated into provincial level in the whole of China.The result shows that ALP increased during 2000-2010 in China,and the ratios of ALP to the actual grain yield were 65.40%and 66.38%in the years 2000 and 2005,respectively.The ALP is an effective dynamic indicator to estimate the land productivity and to represent the basic conditions about the supply of water,energy,nutrients,and the physical basis for plant growth,as well as the local input.ALP estimation could provide supporting information for policy-making about land production planning and land-use management. 展开更多
关键词 Land PRODUCTIVITY ALP GRAIN yield CROP production Land RESOURCES
下载PDF
Comparative productivity of Prosopis cineraria and Tecomella undulata based agroforestry systems in degraded lands of Indian Desert
11
作者 G. Singh 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第A2期144-150,共7页
Tree-crop interactions were monitored by measuring tree growth characters of Prosopis cineraria L.and Tecomella undulata L.and yields of Vigna radiata(L) in agroforestry systems in degraded lands of Indian Desert.Pote... Tree-crop interactions were monitored by measuring tree growth characters of Prosopis cineraria L.and Tecomella undulata L.and yields of Vigna radiata(L) in agroforestry systems in degraded lands of Indian Desert.Potential competition for resource between the trees and associated crop was analyzed by measuring soil water contents, soil organic matters and NH4-N at different depths of soil layers i.e., 0-25 cm, 25-50 cm and 50-75 cm in the experimental plots.The plots size were 16 m × 18 m(D1), 20 m × 18 m(D2) and 32 m × 18 m(D3) with tree densities of 208, 138 and 104 trees·ha-1 after June 2002, respectively.Results showed that tree height increased by 3% to 7% during June 2002 to June 2004.Collar diameter increased by 30% and 11% in D1, 23% and 19% in D2 and 18% and 36% in D3 plots, respectively, in P.cineraria and T.undulata in two years period.The increase in crown diameter was 9% to 18% in P.cineraria and 11% to 16% in T.undulata.Tree growth was relatively greater in 2002 than in 2003.Yield of V.radiata increased linearly from D1 to D3 plots.Lowest soil water content at 1 m distance from tree base indicated greater utilization of soil water within the tree rooting zone.Concentrations of soil organic matters and NH4-N were the highest(p<0.05) in 0-25 cm soil layer.P.cineraria was more beneficial than T.undulata in improving soil conditions and increasing crop yield by 11.1% and thus more suitable for its integration in agricultural land.The yield of agricultural crop increased when density of tree species was appropriate(i.e., optimum tree density), though it varied with tree size and depended upon resource availability.The result indicated bio-economic benefits of optimum density of P.cineraria and T.undulata over traditional practices of maintaining random trees in farming system in arid zones. 展开更多
关键词 arid region crop yield land productivity soil water and nutrients tree growth
下载PDF
Experiences with Rice Grown on Permanent Raised Beds: Effect of Crop Establishment Techniques on Water Use, Productivity, Profitability and Soil Physical Properties
12
作者 R.K.NARESH S.S.TOMAR +5 位作者 Dipender KUMAR Samsher Purushottam S.P.SINGH Ashish DWIVEDI Vineet KUMAR 《Rice science》 SCIE 2014年第3期170-180,共11页
In recent years, conventional rice production technologies have been leading to deterioration of soil health and declining farm profitability due to high inputs of water and labor. Conservation agriculture (CA) base... In recent years, conventional rice production technologies have been leading to deterioration of soil health and declining farm profitability due to high inputs of water and labor. Conservation agriculture (CA) based resource-conserving technologies i.e. zero-tillage (ZT), raised-bed planting and direct-seeded rice (DSR) have shown promise as alternatives to conventional production technologies to overcome these problems. Present study was undertaken during 2009-2012 to establish an understanding of how permanent raised bed cropping system could be practiced to save water at the field application level to improve water productivity and also have the capability to enhance productivity, profitability and soil physical quality. The results showed that among different crop establishment techniques, conventional-tilled puddle transplanted rice (CT-TPR) required 14%-25% more water than other techniques. Compared with the CT-TPR system, zero till direct-seeded rice (ZT-DSR) consumed 6%-10%less water with almost equal system productivity and demonstrated higher water productivity. Wide raised beds saved about 15%-24% water and grain yield decrease of about 8%. Direct-seeded rice after ZT or reduced tillage or on unpuddled soil provided more net income than CT-TPR. The CT-TPR system had higher bulk density and penetration resistance due to compaction caused by the repeated wet tillage in rice. The steady-state infiltration rate and soil aggregation (〉 0.25 mm) were higher under permanent beds and ZT and lower in the CT-TPR system. Under CT-TPR, soil aggregation was static across seasons, whereas it improved under no-till and permanent beds. Similarly, mean weight diameter of aggregates was higher under ZT and permanent beds and increased over time. The study reveals that to sustain the rice productivity, CA-based planting techniques can be more viable options. However, the long-term effects of these alternative technologies need to be studied under varying agro-ecologies in western Uttar Pradesh, India. 展开更多
关键词 permanent raised bed water productivity PRofITABILITY yield water saving crop establishment technique
下载PDF
Economic Potential of Compost Amendment as an Alternative to Irrigation in Maine Potato Production Systems
13
作者 John M. Halloran Robert P. Larkin +2 位作者 Sherri L. DeFauw O. Modesto Olanya Zhongqi He 《American Journal of Plant Sciences》 2013年第2期238-245,共8页
Potato productivity in the northeastern US has been relatively constant for over 50 years, raising questions about what factors are limiting productivity. Research was initiated in 2004 to identify key constraints to ... Potato productivity in the northeastern US has been relatively constant for over 50 years, raising questions about what factors are limiting productivity. Research was initiated in 2004 to identify key constraints to potato productivity by evaluating Status Quo (SQ), Soil Conserving (SC), and Soil Improving (SI) cropping systems under both rainfed and irrigated management, and it was found that addition of compost or irrigation substantially increased yield. In this study, we employed partial budgeting to determine cost differences and their impact on net revenue for these cropping systems. Differences in systems were primarily associated with rotation length, tillage operations, compost and application expenses, and water management practices. When compost (as composted dairy manure) was annually applied at 19 Mg haf-1 and evaluated over the entire 3-year crop rotation cycle, the compost-amended rainfed SI system was more expensive to maintain than the irrigated SC system if compost cost exceeded $3.63 Mg-1. Average marketable yields were used to calculate gross and net revenue for each system. Because average potato yield for the irrigated SQ system (28.4 Mg·ha-1) equaled that in the rainfed SI system (28.3 Mg·ha-1), we were able to compare cost of irrigation versus compost for achieving comparable yield. The compost-amended SI system under rainfed management generated more net revenue from the potato crop than the irrigated SQ system when compost costs were less than $7.42 Mg-1. When compared to the commonly used rainfed SQ system, rainfed SI achieved higher net revenue as long as compost cost was less than $22.95 Mg-1. The rainfed SI system achieved higher net revenue than the irrigated SC system when compost cost was $9.43 Mg-1or less, but generated greater net revenue than the rainfed SC system regardless of compost costs, due to substantially higher yields associated with compost amendment. This investigation demonstrates that compost is a potentially viable substitute to irrigation for potato in the northeastern US;however, such potential is highly dependent on suitable compost sources and application costs. 展开更多
关键词 COMPOST Cropping SYSTEMS ECONOMIC POTENTIAL IRRIGATION Partial BUDGETING Potato production Water Stress yield
下载PDF
Climate Change Impacts on Agroecosystems in China:Processes,Mechanisms and Prospects
14
作者 BAO Lun YU Lingxue +3 位作者 LI Ying YAN Fengqin LYNE Vincent REN Chunying 《Chinese Geographical Science》 SCIE CSCD 2023年第4期583-600,共18页
Building a more resilient response system to climate change for sustainable development and reducing uncertainty in China’s food markets,requires access to historical research gaps and mapping future research progres... Building a more resilient response system to climate change for sustainable development and reducing uncertainty in China’s food markets,requires access to historical research gaps and mapping future research progress for decision making.However,the lack of quantitative and objective analyses to ensure the stability and development of agroecosystems increases the complexity of agro-climatic mechanisms,which leads to uncertainty and undesirable consequences.In this paper,we review the characteristics of climate change in China(1951–2020),reveal the mechanisms of agroecosystem structure in response to climate,and identify challenges and opportunities for future efforts in the context of research progress.The aim is to improve the scientific validity and relevance of future research by clarifying agro-climatic response mechanisms.The results show that surface temperature,precipitation,and frequency of extreme weather events have increased to varying degrees in major agricultural regions of China in 1951–2020.And they have strong geographic variation,which has resulted in droughts in the north and floods in the south.Moreover,climate change has complicated the mechanisms of soil moisture,Net Primary Productivity(NPP),soil carbon pool,and crop pest structure in agroecosystems.This lends to a reduction in soil water holding capacity,NPP,soil carbon content,and the number of natural enemies of diseases and insects,which in turn affects crop yields.However,human interventions can mitigate the deterioration of these factors.We have also realized that the methodology and theory of historical research poses a great challenge to future agroecosystem.Historical and projected climate trends identified current gaps in interdisciplinary integration and multidisciplinary research required to manage diverse spatio-temporal climate change impacts on agroecosystems.Future efforts should highlight integrated management and decision making,multidisciplinary big data coupling,and numerical simulations to ensure sustainable agricultural development,ecological security,and food security in China. 展开更多
关键词 climate change AGROECOSYSTEM Net Primary Productivity(NPP) soil carbon pool risk management crop yield
下载PDF
作物生长模型研究现状与展望
15
作者 蒙继华 王亚楠 +1 位作者 林圳鑫 方慧婷 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期1-15,27,共16页
作物生长模型由最初的作物生长发育模型发展到农业决策支持模型,在科学研究、农业管理、政策制定等方面发挥着越来越重要的作用。本文首先回顾了作物生长模型的发展过程,并按照模型主要驱动因子,将作物生长模型分为土壤因子、光合作用... 作物生长模型由最初的作物生长发育模型发展到农业决策支持模型,在科学研究、农业管理、政策制定等方面发挥着越来越重要的作用。本文首先回顾了作物生长模型的发展过程,并按照模型主要驱动因子,将作物生长模型分为土壤因子、光合作用因子和人为因子驱动3类并分别进行了归纳阐述;然后对典型的模型分别从模型模块、时空尺度、可模拟的作物类型等方面进行列表式对比;并对作物生长模型在气候变化评估、生产管理决策支持、资源管理优化等方面的应用,以及面临的极端条件、复杂农业景观和模型复杂度等挑战进行了总结,在此基础上认为遥感数据同化和孪生农场是其发展方向。 展开更多
关键词 作物生长模型 长势监测 作物估产 驱动因子 遥感 孪生农场
下载PDF
皖西大别山区近20年农作物生产结构变化特征及影响因素分析
16
作者 陈爱民 凌颖 +1 位作者 温晓琴 李远平 《皖西学院学报》 2024年第2期1-7,共7页
以皖西大别山主要农业区六安市为研究区,通过安徽省统计年鉴收集并整理了近20年(2000—2021年)农业生产数据,明确主要农作物类型,分析了耕地面积、种植面积和产量在近20年的变化特征和影响因素。结果显示:(1)近20年粮食作物生产总体变... 以皖西大别山主要农业区六安市为研究区,通过安徽省统计年鉴收集并整理了近20年(2000—2021年)农业生产数据,明确主要农作物类型,分析了耕地面积、种植面积和产量在近20年的变化特征和影响因素。结果显示:(1)近20年粮食作物生产总体变化平缓,仍以稻谷和小麦为主,二者此消彼长。而玉米产量增长较快,逐渐居于第三位次;(2)经济作物生产尽管以蔬菜和油料为主,但随着油料作物产量和种植面积的持续下降,逐渐形成了“蔬菜主导、药材和茶叶地位不断提升”的格局;(3)区域农作物生产结构逐渐从以“粮食作物生产”为主转向“经济作物与粮食作物并重”的发展方向;(4)皖西大别山区近20年农作物结构变化主要受气温变化、受灾面积、机械化水平、政策和人口因素影响。研究结果可为区域农业生态高效发展及相关政策的制定提供一定的理论依据。 展开更多
关键词 皖西大别山区 农作物生产结构 影响因素 种植面积和产量
下载PDF
基于历史气象资料和WOFOST模型的区域产量集合预报 被引量:11
17
作者 马鸿元 黄健熙 +2 位作者 黄海 张晓东 朱德海 《农业机械学报》 EI CAS CSCD 北大核心 2018年第9期257-266,共10页
针对基于作物生长模型进行产量预报时气象要素变化对作物生长的实时影响不能得到充分反映,产量预报缺乏量化不确定性信息的突出问题,选择河北省保定市和衡水市冬小麦主产区为研究对象,提出构建历史气象集合作为预报期气象数据输入驱动WO... 针对基于作物生长模型进行产量预报时气象要素变化对作物生长的实时影响不能得到充分反映,产量预报缺乏量化不确定性信息的突出问题,选择河北省保定市和衡水市冬小麦主产区为研究对象,提出构建历史气象集合作为预报期气象数据输入驱动WOFOST模型的冬小麦生长模拟,并通过实时更新不断向前滚动预报,从传统单一数值的预报转向基于集合的概率预报。结果表明:基于历史气象资料可以进行作物模型的区域产量集合预报,抽穗期至灌浆期是预报精度最高的时期,预报集合中位数与实测产量的皮尔逊相关系数(PCC)最高为0.563,平均绝对误差(MAE)最低为458 kg/hm^2。研究结果表明区域化产量集合预报具有较强的可行性,并为量化作物模拟系统不确定性、数值天气预报与作物模型的结合应用提供了参考。 展开更多
关键词 冬小麦 作物模型 产量预报 集合预报
下载PDF
Varied previous crops on improving oilseed flax productivity in semiarid Loess Plateau in China 被引量:1
18
作者 Bangqing Zhao Yuhong Gao +3 位作者 Bin Yan Zhengjun Cui Haidi Wang Zhi Cao 《Oil Crop Science》 2020年第4期187-193,共7页
To investigate the effects of crop rotation on oilseed flax growth and yield,three season experiments were carried out in semi-arid area of Dingxi,Gansu from 2017 to 2019.The designed 6 rotational systems were FFF(fla... To investigate the effects of crop rotation on oilseed flax growth and yield,three season experiments were carried out in semi-arid area of Dingxi,Gansu from 2017 to 2019.The designed 6 rotational systems were FFF(flax-flaxflax),PFF(potato-flax-flax),WPF(wheat-potato-flax),FPF(flax-potato-flax),PWF(potato-wheat-flax)and FWF(flax-wheat-flax).Flax growth and yield investigation results showed that crop rotation increased leaf area duration,dry matter accumulation,seed nitrogen accumulation,water and nitrogen used efficiency,compared with continuous cropping of flax.Flaxseed yields in rotation systems were 22.23%–44.11%greater than those of continuous cropping system.Those in wheat and potato stubbles had higher tiller number(21.43%and 29.46%),more branches(14.24%and 6.97%),effective capsules(26.35%and 28.79%),higher water use efficiency(40.26%and 33.5%),higher nitrogen partial factor productivity(33.85%and 31.46%)and dry matter(41.98%and 25.47%)than those in oilseed flax stubble.It concluded that crop rotation system was an effective measure for oilseed flax productivity in semi-arid area by improving yield components and promoting biomass. 展开更多
关键词 Crop rotation LINSEED Grain yield Water use efficiency Nitrogen partial factor productivity
下载PDF
膜下滴灌制度与生物炭用量对玉米生长及水氮利用效率的影响 被引量:1
19
作者 杨威 屈忠义 +4 位作者 张如鑫 杨旖璇 贾咏霖 高晓瑜 高利华 《水土保持学报》 CSCD 北大核心 2023年第1期313-322,共10页
为探明干旱地区盐碱地膜下滴灌不同灌水下限施用生物炭对玉米产量和水肥利用效率的响应差异及相互影响关系,提出较优的灌溉制度和生物炭用量。连续2年在河套灌区盐渍化农田玉米生长阶段进行小区控制试验,设计3个灌水下限[土壤基质势为-1... 为探明干旱地区盐碱地膜下滴灌不同灌水下限施用生物炭对玉米产量和水肥利用效率的响应差异及相互影响关系,提出较优的灌溉制度和生物炭用量。连续2年在河套灌区盐渍化农田玉米生长阶段进行小区控制试验,设计3个灌水下限[土壤基质势为-15(W15),-25(W25),-35(W35)kPa,灌水定额为22.5 mm]和3个生物炭用量水平[0(B0),15(B15),30(B30)t/hm^(2)],2因素完全随机试验设计,共9个处理。测定并分析玉米全生育期0—15 cm土壤理化性状、作物生长特征和水氮利用效率。结果表明:不同灌水下限施用生物炭整体提高玉米全生育期土壤含水率、有机质和碱解氮含量,同一灌溉水平下生物炭用量越高,各指标提升的幅度越大。施用生物炭提高玉米地上部干物质积累量和产量,灌溉水利用效率和氮肥偏生产力显著提高,且生物炭施用当年的效果普遍优于翌年。相较于不施用生物炭的对照,W15、W25、W35条件下,B15使玉米产量平均增加12.8%,10.3%,14.2%,灌溉水利用效率提高14.2%,10.4%,12.9%,氮肥偏生产力提升12.8%,10.4%,14.0%,其节水增产提效的作用普遍优于同一灌水处理的B30。建议河套灌区盐渍化农田玉米生育期的膜下滴灌灌水下限为-35 kPa,生物炭施用量为15 t/hm^(2)。 展开更多
关键词 生物炭 灌溉制度 土壤水分 水分生产力 氮肥利用效率 土壤肥力 作物产量
下载PDF
农作物遥感识别与单产估算研究综述 被引量:7
20
作者 赵龙才 李粉玲 常庆瑞 《农业机械学报》 EI CAS CSCD 北大核心 2023年第2期1-19,共19页
遥感凭借其快速、宏观、无损及客观等特点,在快速获取与解析作物类型、种植面积、产量等信息方面具有独特优势。遥感提取和解译的作物空间分布图、种植面积、产量信息可以服务于农业资源监管、农业信息普查、农业保险、农业投资、精准... 遥感凭借其快速、宏观、无损及客观等特点,在快速获取与解析作物类型、种植面积、产量等信息方面具有独特优势。遥感提取和解译的作物空间分布图、种植面积、产量信息可以服务于农业资源监管、农业信息普查、农业保险、农业投资、精准农业等方面。本文分别就农作物遥感识别与农作物单产遥感估算的研究现状、面临的问题、潜在研究方向进行了总结概述。首先总结了农作物遥感识别特征与分类模型的研究现状,针对遥感识别特征与作物类型缺乏知识关联的核心问题,提出利用深度学习方法协同学习作物生长过程中的“时-空-谱”特征,并构建面向农作物遥感识别的知识图谱,从而解决当前农作物遥感识别在识别精度和识别效率方面的问题。然后,分别从经验统计模型、遥感光合模型、作物生长模型方面对当前作物单产遥感估算进行分析总结,提出随着高空间分辨率、高光谱分辨率、高时间分辨率数据的普及和深度学习技术发展,未来应充分利用作物生长模型机理性强、深度学习对复杂问题建模能力强的特点,使用作物生长模型进行点位尺度模拟以驱动深度学习完成复杂场景下的建模学习,最终实现以机理做约束、以深度学习做空间外推的单产估算模式。 展开更多
关键词 农业遥感 类型识别 单产估算 作物生长模型 深度学习
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部