期刊文献+
共找到1,192篇文章
< 1 2 60 >
每页显示 20 50 100
A Deep Learning Approach for Forecasting Thunderstorm Gusts in the Beijing–Tianjin–Hebei Region 被引量:1
1
作者 Yunqing LIU Lu YANG +3 位作者 Mingxuan CHEN Linye SONG Lei HAN Jingfeng XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1342-1363,共22页
Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly b... Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China. 展开更多
关键词 thunderstorm gusts deep learning weather forecasting convolutional neural network TRANSFORMER
下载PDF
Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models 被引量:1
2
作者 Lu LI Yongjiu DAI +5 位作者 Zhongwang WEI Wei SHANGGUAN Nan WEI Yonggen ZHANG Qingliang LI Xian-Xiang LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1326-1341,共16页
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient... Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions. 展开更多
关键词 soil moisture forecasting hybrid model deep learning ConvLSTM attention mechanism
下载PDF
Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts 被引量:1
3
作者 Mengmeng SONG Dazhi YANG +7 位作者 Sebastian LERCH Xiang'ao XIA Gokhan Mert YAGLI Jamie M.BRIGHT Yanbo SHEN Bai LIU Xingli LIU Martin Janos MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1417-1437,共21页
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil... Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks. 展开更多
关键词 ensemble weather forecasting forecast calibration non-crossing quantile regression neural network CORP reliability diagram POST-PROCESSING
下载PDF
甲状腺乳头状癌超声图像表现在预测颈部Ⅵ区淋巴结转移危险度的临床价值
4
作者 刘杰 于景超 +3 位作者 王猛 李卫 鲁金乐 陈雅婷 《中国耳鼻咽喉头颈外科》 CSCD 2024年第7期470-473,共4页
目的 分析甲状腺乳头状癌(PTC)超声图像表现在预测颈部Ⅵ区淋巴结转移(lymph node metastasis in the cervicalregion Ⅵ,CLNM-Ⅵ)危险度的临床价值。方法 选取2022年4月~2023年6月在河北省沧州中西医结合医院接受手术治疗并经病理证实... 目的 分析甲状腺乳头状癌(PTC)超声图像表现在预测颈部Ⅵ区淋巴结转移(lymph node metastasis in the cervicalregion Ⅵ,CLNM-Ⅵ)危险度的临床价值。方法 选取2022年4月~2023年6月在河北省沧州中西医结合医院接受手术治疗并经病理证实的350例PTC患者,根据术后病理结果,将患者分为CLNM-Ⅵ组和非CLNM-Ⅵ组。收集并对比两组术前超声图像表现及临床病理特征,应用Logistic回归分析PTC患者CLNM-Ⅵ危险因素,受试者工作特征(ROC)曲线分析PTC超声图像表现对CLNM-Ⅵ的预测价值。结果 单因素分析显示,CLNM-Ⅵ组男性、实性或囊实性、年龄≤45岁、低回声、甲状腺背景正常、点状强回声的构成比均大于非CLNM-Ⅵ组(P均<0.05)。Logistic回归分析显示,男性、实性或囊实性、年龄≤45岁、低回声、甲状腺背景正常、病灶内可见点状强回声是CLNM-Ⅵ的独立危险因素(P均<0.05);进一步经ROC曲线分析显示,以上预测CLNM-Ⅵ的AUC分别为0.565、0.580、0.529、0.585、0.582、0.582,联合预测AUC为0.708。结论PTC超声图像表现在CLNM-Ⅵ风险评估中具有重要意义,可为PTC的预后判断提供一定的参考依据。 展开更多
关键词 甲状腺肿瘤(Thyroid Neoplasms) 超声检查(Ultrasonography) 风险评估(Risk Assessment) 预测(Forecasting) 颈部Ⅵ区(regionⅥof the neck) 淋巴结转移(lymph node metastasis)
下载PDF
Dynamical analysis,control,boundedness,and prediction for a fractional-order financial risk system
5
作者 Kehao Yang Song Zheng +4 位作者 Tianhu Yu Aceng Sambas Muhamad Deni Johansyah Hassan Saberi-Nik Mohamad Afendee Mohamed 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期223-235,共13页
This paper delves into the dynamical analysis,chaos control,Mittag–Leffler boundedness(MLB),and forecasting a fractional-order financial risk(FOFR)system through an absolute function term.To this end,the FOFR system ... This paper delves into the dynamical analysis,chaos control,Mittag–Leffler boundedness(MLB),and forecasting a fractional-order financial risk(FOFR)system through an absolute function term.To this end,the FOFR system is first proposed,and the adomian decomposition method(ADM)is employed to resolve this fractional-order system.The stability of equilibrium points and the corresponding control schemes are assessed,and several classical tools such as Lyapunov exponents(LE),bifurcation diagrams,complexity analysis(CA),and 0–1 test are further extended to analyze the dynamical behaviors of FOFR.Then the global Mittag–Leffler attractive set(MLAS)and Mittag–Leffler positive invariant set(MLPIS)for the proposed financial risk(FR)system are discussed.Finally,a proficient reservoir-computing(RC)method is applied to forecast the temporal evolution of the complex dynamics for the proposed system,and some simulations are carried out to show the effectiveness and feasibility of the present scheme. 展开更多
关键词 FOFR system dynamical analysis CONTROL BOUNDEDNESS forecasting
下载PDF
Longitudinal dependence of the forecast accuracy of the ionospheric total electron content in the equatorial zone
6
作者 Artem Kharakhashyan Olga Maltseva 《Geodesy and Geodynamics》 EI CSCD 2024年第5期528-541,共14页
The longitudinal dependence of the behavior of ionospheric parameters has been the subject of a number of works where significant variations are discovered.This also applies to the prediction of the ionospheric total ... The longitudinal dependence of the behavior of ionospheric parameters has been the subject of a number of works where significant variations are discovered.This also applies to the prediction of the ionospheric total electron content(TEC),which neural network methods have recently been widely used.However,the results are mainly presented for a limited set of meridians.This paper examines the longitudinal dependence of the TEC forecast accuracy in the equatorial zone.In this case,the methods are used that provided the best accuracy on three meridians:European(30°E),Southeastern(110°E)and American(75°W).Results for the stations considered are analyzed as a function of longitude using the Jet Propulsion Laboratory Global Ionosphere Map(JPL GIM)for 2015.These results are for 2 h ahead and 24 h ahead forecast.It was found that in this case,based on the metric values,three groups of architectures can be distinguished.The first group included long short-term memory(LSTM),gated recurrent unit(GRU),and temporal convolutional networks(TCN)models as a part of unidirectional deep learning models;the second group is based on the recurrent models from the first group,which were supplemented with a bidirectional algorithm,increasing the TEC forecasting accuracy by 2-3 times.The third group,which includes the bidirectional TCN architecture(BiTCN),provided the highest accuracy.For this architecture,according to data obtained for 9 equatorial stations,practical independence of the TEC prediction accuracy from longitude was observed under the following metrics(Mean Absolute Error MAE,Root Mean Square Error RMSE,Mean Absolute Percentage Error MAPE):MAE(2 h)is 0.2 TECU approximately;MAE(24 h)is 0.4 TECU approximately;RMSE(2 h)is less than 0.5 TECU except Niue station(RMSE(2 h)is 1 TECU approximately);RMSE(24 h)is in the range of 1.0-1.7 TECU;MAPE(2 h)<1%except Darwin station,MAPE(24 h)<2%.This result was confirmed by data from additional 5 stations that formed latitudinal chains in the equatorial part of the three meridians.The complete correspondence of the observational and predicted TEC values is illustrated using several stations for disturbed conditions on December 19-22,2015,which included the strongest magnetic storm in the second half of the year(min Dst=-155 nT). 展开更多
关键词 IONOSPHERE Total electron content Forecasting BiGRU BiLSTM BiTCN Temporal convolution
下载PDF
Better use of experience from other reservoirs for accurate production forecasting by learn-to-learn method
7
作者 Hao-Chen Wang Kai Zhang +7 位作者 Nancy Chen Wen-Sheng Zhou Chen Liu Ji-Fu Wang Li-Ming Zhang Zhi-Gang Yu Shi-Ti Cui Mei-Chun Yang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期716-728,共13页
To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studie... To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studied to make predictions accurate.However,the permeability field,well patterns,and development regime must all be similar for two reservoirs to be considered in the same class.This results in very few available experiences from other reservoirs even though there is a lot of historical information on numerous reservoirs because it is difficult to find such similar reservoirs.This paper proposes a learn-to-learn method,which can better utilize a vast amount of historical data from various reservoirs.Intuitively,the proposed method first learns how to learn samples before directly learning rules in samples.Technically,by utilizing gradients from networks with independent parameters and copied structure in each class of reservoirs,the proposed network obtains the optimal shared initial parameters which are regarded as transferable information across different classes.Based on that,the network is able to predict future production indices for the target reservoir by only training with very limited samples collected from reservoirs in the same class.Two cases further demonstrate its superiority in accuracy to other widely-used network methods. 展开更多
关键词 Production forecasting Multiple patterns Few-shot learning Transfer learning
下载PDF
Promising Results Predict Role for Artificial Intelligence in Weather Forecasting
8
作者 Mitch Leslie 《Engineering》 SCIE EI CAS CSCD 2024年第8期10-12,共3页
Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,... Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,recent results suggest that AI also excels at weather forecasting.For global predictions,GraphCast,an AI system developed by Google subsidiary DeepMind(London,UK),outperforms the state-of-the-art model from the European Centre for Medium-Range Weather Forecasts(ECMWF),providing more accurate projections of variables such as temperature and humidity 90%of the time[2,3].Other AI systems,including Pangu-Weather from the Chinese tech company Huawei(Shenzhen,China)[4],can also match or beat traditional global forecasting models. 展开更多
关键词 forecasting humidity WEATHER
下载PDF
Preface to the Special Issue:AI Applications in Atmospheric and Oceanic Science:Pioneering the Future(Part I)
9
作者 Zhemin TAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1279-1280,共2页
As AI continues to establish itself as a cornerstone technology across various industries and scientific disciplines,its profound impact on atmospheric and oceanic science is becoming increasingly apparent.The advanta... As AI continues to establish itself as a cornerstone technology across various industries and scientific disciplines,its profound impact on atmospheric and oceanic science is becoming increasingly apparent.The advantages of AI in surmounting obstacles within our field are undeniable,as evidenced by breakthroughs in weather forecasting(e.g.,Bi et al.,2023),climate prediction(e.g.,Ham et al.,2019),AI-based parameterization schemes(e.g.,Rasp et al.,2018;Wang and Tan,2023),and beyond.Recognizing the transformative potential of AI in atmospheric and oceanic science,this special issue endeavors to explore the extensive applications of AI in our domain. 展开更多
关键词 WEATHER forecasting PREDICTION
下载PDF
Generalized load graphical forecasting method based on modal decomposition
10
作者 Lizhen Wu Peixin Chang +1 位作者 Wei Chen Tingting Pei 《Global Energy Interconnection》 EI CSCD 2024年第2期166-178,共13页
In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power su... In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method. 展开更多
关键词 Load forecasting Generalized load Image processing DenseNet Modal decomposition
下载PDF
Seasonal Characteristics of Forecasting Uncertainties in Surface PM_(2.5)Concentration Associated with Forecast Lead Time over the Beijing-Tianjin-Hebei Region
11
作者 Qiuyan DU Chun ZHAO +6 位作者 Jiawang FENG Zining YANG Jiamin XU Jun GU Mingshuai ZHANG Mingyue XU Shengfu LIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期801-816,共16页
Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological foreca... Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological forecasting uncertainties on air quality forecasts specific to different seasons is still not well known.In this study,a series of forecasts with different forecast lead times for January,April,July,and October of 2018 are conducted over the Beijing-Tianjin-Hebei(BTH)region and the impacts of meteorological forecasting uncertainties on surface PM_(2.5)concentration forecasts with each lead time are investigated.With increased lead time,the forecasted PM_(2.5)concentrations significantly change and demonstrate obvious seasonal variations.In general,the forecasting uncertainties in monthly mean surface PM_(2.5)concentrations in the BTH region due to lead time are the largest(80%)in spring,followed by autumn(~50%),summer(~40%),and winter(20%).In winter,the forecasting uncertainties in total surface PM_(2.5)mass due to lead time are mainly due to the uncertainties in PBL heights and hence the PBL mixing of anthropogenic primary particles.In spring,the forecasting uncertainties are mainly from the impacts of lead time on lower-tropospheric northwesterly winds,thereby further enhancing the condensation production of anthropogenic secondary particles by the long-range transport of natural dust.In summer,the forecasting uncertainties result mainly from the decrease in dry and wet deposition rates,which are associated with the reduction of near-surface wind speed and precipitation rate.In autumn,the forecasting uncertainties arise mainly from the change in the transport of remote natural dust and anthropogenic particles,which is associated with changes in the large-scale circulation. 展开更多
关键词 PM_(2.5) forecasting uncertainties forecast lead time meteorological fields Beijing-Tianjin-Hebei region
下载PDF
Probabilistic modeling of multifunction radars with autoregressive kernel mixture network
12
作者 Hancong Feng Kaili.Jiang +4 位作者 Zhixing Zhou Yuxin Zhao Kailun Tian Haixin Yan Bin Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期275-288,共14页
The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrai... The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection. 展开更多
关键词 Probabilistic forecasting Multifunction radar Unsupervised learning Change point detection Outlier detection
下载PDF
Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks
13
作者 Temesgen Gebremariam ASFAW Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期449-464,共16页
This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that co... This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September(JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa,particularly in providing improved forecast products which are essential for end users. 展开更多
关键词 East Africa seasonal precipitation forecasting DOWNSCALING deep learning convolutional neural networks(CNNs)
下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
14
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
下载PDF
A Measurement Study of the Ethereum Underlying P2P Network
15
作者 Mohammad ZMasoud Yousef Jaradat +3 位作者 Ahmad Manasrah Mohammad Alia Khaled Suwais Sally Almanasra 《Computers, Materials & Continua》 SCIE EI 2024年第1期515-532,共18页
This work carried out a measurement study of the Ethereum Peer-to-Peer(P2P)network to gain a better understanding of the underlying nodes.Ethereum was applied because it pioneered distributed applications,smart contra... This work carried out a measurement study of the Ethereum Peer-to-Peer(P2P)network to gain a better understanding of the underlying nodes.Ethereum was applied because it pioneered distributed applications,smart contracts,and Web3.Moreover,its application layer language“Solidity”is widely used in smart contracts across different public and private blockchains.To this end,we wrote a new Ethereum client based on Geth to collect Ethereum node information.Moreover,various web scrapers have been written to collect nodes’historical data fromthe Internet Archive and the Wayback Machine project.The collected data has been compared with two other services that harvest the number of Ethereumnodes.Ourmethod has collectedmore than 30% more than the other services.The data trained a neural network model regarding time series to predict the number of online nodes in the future.Our findings show that there are less than 20% of the same nodes daily,indicating thatmost nodes in the network change frequently.It poses a question of the stability of the network.Furthermore,historical data shows that the top ten countries with Ethereum clients have not changed since 2016.The popular operating system of the underlying nodes has shifted from Windows to Linux over time,increasing node security.The results have also shown that the number of Middle East and North Africa(MENA)Ethereum nodes is neglected compared with nodes recorded from other regions.It opens the door for developing new mechanisms to encourage users from these regions to contribute to this technology.Finally,the model has been trained and demonstrated an accuracy of 92% in predicting the future number of nodes in the Ethereum network. 展开更多
关键词 Ethereum MEASUREMENT ethereum client neural network time series forecasting web-scarping wayback machine blockchain
下载PDF
CSEP-CN:Parameter Optimization of Pattern Informatics Method
16
作者 TIAN Weixi ZHANG Yongxian +2 位作者 FENG Maoning JU Changhui ZHANG Shengfeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期67-69,共3页
Since the establishment of the Collaboratory for the Study of Earthquake Predictability,China(CSEP-CN)center,no comprehensive study has been conducted on the parameter models of the Pattern Informatics(PI)method withi... Since the establishment of the Collaboratory for the Study of Earthquake Predictability,China(CSEP-CN)center,no comprehensive study has been conducted on the parameter models of the Pattern Informatics(PI)method within the China Seismic Experimental Site(CSES)region.Additionally,the boundary issues of the study area have been a subject of ongoing debate.Tian et al.(2024)indicates that variations in seismic activity within the region impact the predictive efficacy of the PI method. 展开更多
关键词 pattern informatics(PI) earthquake predictability strong earthquake forecasting
下载PDF
Dynamic Forecasting of Traffic Event Duration in Istanbul:A Classification Approach with Real-Time Data Integration
17
作者 Mesut Ulu Yusuf Sait Türkan +2 位作者 Kenan Menguc Ersin Namlı Tarık Kucukdeniz 《Computers, Materials & Continua》 SCIE EI 2024年第8期2259-2281,共23页
Today,urban traffic,growing populations,and dense transportation networks are contributing to an increase in traffic incidents.These incidents include traffic accidents,vehicle breakdowns,fires,and traffic disputes,re... Today,urban traffic,growing populations,and dense transportation networks are contributing to an increase in traffic incidents.These incidents include traffic accidents,vehicle breakdowns,fires,and traffic disputes,resulting in long waiting times,high carbon emissions,and other undesirable situations.It is vital to estimate incident response times quickly and accurately after traffic incidents occur for the success of incident-related planning and response activities.This study presents a model for forecasting the traffic incident duration of traffic events with high precision.The proposed model goes through a 4-stage process using various features to predict the duration of four different traffic events and presents a feature reduction approach to enable real-time data collection and prediction.In the first stage,the dataset consisting of 24,431 data points and 75 variables is prepared by data collection,merging,missing data processing and data cleaning.In the second stage,models such as Decision Trees(DT),K-Nearest Neighbour(KNN),Random Forest(RF)and Support Vector Machines(SVM)are used and hyperparameter optimisation is performed with GridSearchCV.In the third stage,feature selection and reduction are performed and real-time data are used.In the last stage,model performance with 14 variables is evaluated with metrics such as accuracy,precision,recall,F1-score,MCC,confusion matrix and SHAP.The RF model outperforms other models with an accuracy of 98.5%.The study’s prediction results demonstrate that the proposed dynamic prediction model can achieve a high level of success. 展开更多
关键词 Traffic event duration forecasting machine learning feature reduction shapley additive explanations(SHAP)
下载PDF
A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting
18
作者 Farhan Ullah Xuexia Zhang +2 位作者 Mansoor Khan Muhammad Abid Abdullah Mohamed 《Computers, Materials & Continua》 SCIE EI 2024年第5期3373-3395,共23页
Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article... Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions. 展开更多
关键词 Ensemble learning machine learning real-time data analysis stakeholder analysis temporal convolutional network wind power forecasting
下载PDF
Scientific Advances and Weather Services of the China Meteorological Administration’s National Forecasting Systems during the Beijing 2022 Winter Olympics
19
作者 Guo DENG Xueshun SHEN +23 位作者 Jun DU Jiandong GONG Hua TONG Liantang DENG Zhifang XU Jing CHEN Jian SUN Yong WANG Jiangkai HU Jianjie WANG Mingxuan CHEN Huiling YUAN Yutao ZHANG Hongqi LI Yuanzhe WANG Li GAO Li SHENG Da LI Li LI Hao WANG Ying ZHAO Yinglin LI Zhili LIU Wenhua GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期767-776,共10页
Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational... Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems. 展开更多
关键词 Beijing Winter Olympic Games CMA national forecasting system data assimilation ensemble forecast bias correction and downscaling machine learning-based fusion methods
下载PDF
CALTM:A Context-Aware Long-Term Time-Series Forecasting Model
20
作者 Canghong Jin Jiapeng Chen +3 位作者 Shuyu Wu Hao Wu Shuoping Wang Jing Ying 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期873-891,共19页
Time series data plays a crucial role in intelligent transportation systems.Traffic flow forecasting represents a precise estimation of future traffic flow within a specific region and time interval.Existing approache... Time series data plays a crucial role in intelligent transportation systems.Traffic flow forecasting represents a precise estimation of future traffic flow within a specific region and time interval.Existing approaches,including sequence periodic,regression,and deep learning models,have shown promising results in short-term series forecasting.However,forecasting scenarios specifically focused on holiday traffic flow present unique challenges,such as distinct traffic patterns during vacations and the increased demand for long-term forecastings.Consequently,the effectiveness of existing methods diminishes in such scenarios.Therefore,we propose a novel longterm forecasting model based on scene matching and embedding fusion representation to forecast long-term holiday traffic flow.Our model comprises three components:the similar scene matching module,responsible for extracting Similar Scene Features;the long-short term representation fusion module,which integrates scenario embeddings;and a simple fully connected layer at the head for making the final forecasting.Experimental results on real datasets demonstrate that our model outperforms other methods,particularly in medium and long-term forecasting scenarios. 展开更多
关键词 Traffic volume forecasting scene matching multi module fusion
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部