Background: Forest biodiversity is the foundation of many ecosystem services, and the effect of biodiversity on ecosystem functioning and processes (BEF) has been a central issue in biodiversity studies. Although m...Background: Forest biodiversity is the foundation of many ecosystem services, and the effect of biodiversity on ecosystem functioning and processes (BEF) has been a central issue in biodiversity studies. Although many hypotheses have been developed to interpret global gradients of biodiversity, there has not been complete agreement on mechanisms controlling biodiversity patterns and distributions. Differences may be due to limited observation data and inconsistencies of spatial scales in analysis. Methods: In this study, we take advantage of USDA Forest Service forest inventory and analysis (FIA) data for exploring regional forest biodiversity and BEF in New England forests. The FIA data provide detailed information of sampled plots and trees for the region, including 6000 FIA plots and more than 33,000 individual trees. Biodiversity models were used to analyze the data. Results: Tree species diversity increases from the north to the south at a rate about 2-3 species per latitudinal degree. Tree species diversity is better predicted by tree height than forest age or biomass. Very different distribution patterns of two common maple species, sugar maple (Acer sdcchorum) and red maple (Acer rubrum), highlight the vulnerability of sugar maple and its potential replacement by red maple on New England landscapes. Red maple generally already outperforms sugar maple, and will likely and continuously benefit from a changing climate in New England. Conclusions: We conclude that forest structure (height) and resources (biomass) are more likely foundational characteristics supporting biodiversity rather than biodiversity determining forest productivity and/or biomass. The potential replacement of red maple for sugar maple in the New England areas could affect biodiversity and stability of forest ecosystem functioning because sugar maple plays important ecological roles distinct from red maple that are beneficial to other tree species in northern hardwood forests. Such a change may not affect forest resilience in terms of forest productivity and biomass as these are similar in red maple and sugar maple, however, it would almost certainly alter forest structure across the landscape.展开更多
This paper examines the role and effectiveness of locacal institutions in the management of forest biodiversity in New Dabaga-Ulongambi Forest Reserve, Tanzania. Data were obtained through questionnaires, interviews, ...This paper examines the role and effectiveness of locacal institutions in the management of forest biodiversity in New Dabaga-Ulongambi Forest Reserve, Tanzania. Data were obtained through questionnaires, interviews, focus group discussions, participatory rural appraisal and field observations. The study revealed that the most remarkable local institutions connected to forest biodiversity management include: Village Natural Resources Man- agement Committee (92%), tree nursery group (79.4%), beekeep- ing groups (61.1%), fish fanning (43.3%), livestock rearing group (33.9%). Main activities carried out by local institutions which directly contribute to the sustainability Of forest reserve include: forest patrols, fire extinguish, preparation of fire breaks, plant- ing of trees along the forest boundaries, creation of awareness, arresting of forest defaulters, participation in income generation activities. For the purpose of realization that local communities are capable of managing forest biodiversity through their traditional institutions, the policy should provide tangible opportunity for local communities to meet their needs as they manage the forests.展开更多
According to the evaluative data of forest biodiversity variation in China from 1973 to 1998, not only the gray model GM( 1,2), but also the status spatial characterization model with the optimal control model for for...According to the evaluative data of forest biodiversity variation in China from 1973 to 1998, not only the gray model GM( 1,2), but also the status spatial characterization model with the optimal control model for forest biodiversity variation is developed by using some mathematic approaches and knowledge in economic cybernetics. Furthermore, the structural characteristics of forest biodiversity variation are analyzed. The paper points out that the variation of forest biodiversity is instable, but it ca...展开更多
We studied the impacts of liana cutting as a forest management tool on liana diversity (species richness, Shannon diversity index) and community structure (diam- eter distribution, basal area, species dominance) i...We studied the impacts of liana cutting as a forest management tool on liana diversity (species richness, Shannon diversity index) and community structure (diam- eter distribution, basal area, species dominance) in the Asenanyo Forest Reserve, Ghana. Two types of silvicul- turally treated forests were studied: Logging treated (LT) and Tropical Shelterwood System (TSS) treated forests. An untreated primary forest was included as a control, result- ing in three forest management systems. Lianas with diameter 〉2 cm were identified in ten 40 × 40 m2 plots within each management system. Liana cutting signifi- cantly reduced liana species richness, Shannon diversity index, and basal area in the LT forest after two decades. However, liana species richness and basal area werecomparable in the TSS treated and untreated forests, indi- cating significant recovery in the former after over six decades. Sφrensen similarity index of liana species com- position between the untreated forest and each of the treated forests was moderate. Our findings suggest that liana cutting most likely influenced the dominance of some liana species. In view of the adverse impact of blanket liana cutting on liana diversity, selective liana cutting is rec- ommended as a means of controlling liana numbers while maintaining liana diversity.展开更多
To understand the impacts of reforestation on woody species composition,species diversity and community structure,seven plantation forests in dryhot valley of the Jinsha River in Southwest China were investigated,with...To understand the impacts of reforestation on woody species composition,species diversity and community structure,seven plantation forests in dryhot valley of the Jinsha River in Southwest China were investigated,with adjacent wastelands,natural shrub grassland and a natural forest as references.Species importance value,species richness,species heterogeneity and Sorenson similarity index between plantations and the natural forest were analyzed.Results indicated that compared to wastelands and natural shrub grassland,reforestation improved species diversity and community structure,and more forest woody species found suitable habitats in plantations.Species diversity in understory of plantations and Sorenson similarity index were significantly negatively correlated with stem density in mature plantations(26-31 years old).Higher species diversity and Sorenson similarity index existed in mature sparse plantations due to lower stem density and more tree species planted initially.In contrast,reference natural forest,with species heterogeneity of 2.28 for shrub layer,showed the highest species diversity.It would take a long time for species composition and diversity to recover through reforestation in a dry-hot valley.Therefore,it was essential to protect remnant natural forests strictly and reforest with suitable management such as lower stem density and increasing genetic diversity of trees planted.展开更多
Stand-level retention is an important component of sustainable forest management which aims to balance ecological,social and economic objectives.Long-term retention of mature forest structures at the time of harvestin...Stand-level retention is an important component of sustainable forest management which aims to balance ecological,social and economic objectives.Long-term retention of mature forest structures at the time of harvesting(variable retention)is intended to produce future forest stands that more closely resemble conditions that develop after natural disturbances,thereby maintaining greater diversity of habitats for a variety of organisms.Structure includes features such as live and dead trees representing multiple canopy layers,undisturbed understory vegetation and coarse woody debris.Over the past two decades,variable retention has become common on forest lands in the temperate rainforests of coastal British Columbia(BC)and has been applied to a lesser extent in inland forest types.Our review of studies in BC and in similar forest types in our region indicates that both aggregated and dispersed retention can contribute to biodiversity conservation by providing short-term‘life-boating’habitat for some species and by enhancing the structural characteristics of future stands.For example,greater abundance of species present in the pre-harvest forest have been documented for vegetation,birds,carabid beetles,gastropods,ectomycorrhizal fungi and soil fauna in retention cutblocks compared to clearcuts.There are,however,some negative consequences for timber production such as wind damage to retained trees and reduced growth rates of tree regeneration compared to clearcuts.The authors suggest an adaptive management approach for balancing competing objectives when faced with uncertainty.This includes monitoring the implementation and effectiveness of various strategies for achieving goals.Over two decades of experience applying variable retention harvesting to industrial-scale management of forest lands in BC suggests that it is possible to balance production of wood with biodiversity conservation.展开更多
Variable retention harvesting is a silvicultural system that focuses on retaining key elements of stand structure at the time of logging and is increasingly being used worldwide.We describe the design and establishmen...Variable retention harvesting is a silvicultural system that focuses on retaining key elements of stand structure at the time of logging and is increasingly being used worldwide.We describe the design and establishment of a variable retention harvesting experiment established in the Mountain Ash(Eucalyptus regnans)forests of the Central Highlands of Victoria,south-eastern Australia.The experiment was instigated in 2003,and the work to date has shown that it has environmental benefits for certain groups of small mammals,birds,and vascular plants.The experiment has been integrated with an ongoing long-term monitoring program as well as other experiments such as those in post-fire salvage-logged areas.Collectively,the results of various studies suggest that the potential value of variable retention harvesting extends beyond green-tree logging to post-fire salvage logging environments.We outline some of the challenges in,and new perspectives derived from,implementing and maintaining our experiment.This included difficulties protecting islands from high-intensity post-harvest regeneration burns and threat of declining funding undermining ongoing project viability.A critically important perspective concerns the ecological and economic context in which variable retention harvesting is implemented.In the particular case of Mountain Ash forests,assessments using formal IUCN criteria classify the ecosystem as being Critically Endangered under the Red Listed Ecosystem approach.As a result,Mountain Ash forests are at a high risk of ecosystem collapse.Further logging will increase that risk,making the basis for continued harvesting questionable.In addition,economic analyses suggest that the value of natural assets,like water production,far outweigh the value of the wood products harvested from the Mountain Ash ecosystem,again leading to questions about the viability of ongoing harvesting.We therefore conclude that whilst variable retention harvesting has the potential to contribute to biodiversity conservation in Mountain Ash forests,broader ecological and economic contextual issues(such as the values of competing resources like water yields and the heavily degraded state of the forest)may erode the case for its broader application.展开更多
基金the project NRS-6“Climate,Fire,and Carbon Cycle Sciences”supported by the USDA Forest ServiceBeijing Forestry University for covering the trip to the conference and generous conference venue facilitating this study
文摘Background: Forest biodiversity is the foundation of many ecosystem services, and the effect of biodiversity on ecosystem functioning and processes (BEF) has been a central issue in biodiversity studies. Although many hypotheses have been developed to interpret global gradients of biodiversity, there has not been complete agreement on mechanisms controlling biodiversity patterns and distributions. Differences may be due to limited observation data and inconsistencies of spatial scales in analysis. Methods: In this study, we take advantage of USDA Forest Service forest inventory and analysis (FIA) data for exploring regional forest biodiversity and BEF in New England forests. The FIA data provide detailed information of sampled plots and trees for the region, including 6000 FIA plots and more than 33,000 individual trees. Biodiversity models were used to analyze the data. Results: Tree species diversity increases from the north to the south at a rate about 2-3 species per latitudinal degree. Tree species diversity is better predicted by tree height than forest age or biomass. Very different distribution patterns of two common maple species, sugar maple (Acer sdcchorum) and red maple (Acer rubrum), highlight the vulnerability of sugar maple and its potential replacement by red maple on New England landscapes. Red maple generally already outperforms sugar maple, and will likely and continuously benefit from a changing climate in New England. Conclusions: We conclude that forest structure (height) and resources (biomass) are more likely foundational characteristics supporting biodiversity rather than biodiversity determining forest productivity and/or biomass. The potential replacement of red maple for sugar maple in the New England areas could affect biodiversity and stability of forest ecosystem functioning because sugar maple plays important ecological roles distinct from red maple that are beneficial to other tree species in northern hardwood forests. Such a change may not affect forest resilience in terms of forest productivity and biomass as these are similar in red maple and sugar maple, however, it would almost certainly alter forest structure across the landscape.
基金TAFORI and Forestry and Beekeeping Division through Participatory Forest Management (PFM)grant for funding this study
文摘This paper examines the role and effectiveness of locacal institutions in the management of forest biodiversity in New Dabaga-Ulongambi Forest Reserve, Tanzania. Data were obtained through questionnaires, interviews, focus group discussions, participatory rural appraisal and field observations. The study revealed that the most remarkable local institutions connected to forest biodiversity management include: Village Natural Resources Man- agement Committee (92%), tree nursery group (79.4%), beekeep- ing groups (61.1%), fish fanning (43.3%), livestock rearing group (33.9%). Main activities carried out by local institutions which directly contribute to the sustainability Of forest reserve include: forest patrols, fire extinguish, preparation of fire breaks, plant- ing of trees along the forest boundaries, creation of awareness, arresting of forest defaulters, participation in income generation activities. For the purpose of realization that local communities are capable of managing forest biodiversity through their traditional institutions, the policy should provide tangible opportunity for local communities to meet their needs as they manage the forests.
文摘According to the evaluative data of forest biodiversity variation in China from 1973 to 1998, not only the gray model GM( 1,2), but also the status spatial characterization model with the optimal control model for forest biodiversity variation is developed by using some mathematic approaches and knowledge in economic cybernetics. Furthermore, the structural characteristics of forest biodiversity variation are analyzed. The paper points out that the variation of forest biodiversity is instable, but it ca...
基金supported by TWAS-USM Postgraduate Fellowship and Research University Grant(RU)(1001/PBIOLOGI/815086)
文摘We studied the impacts of liana cutting as a forest management tool on liana diversity (species richness, Shannon diversity index) and community structure (diam- eter distribution, basal area, species dominance) in the Asenanyo Forest Reserve, Ghana. Two types of silvicul- turally treated forests were studied: Logging treated (LT) and Tropical Shelterwood System (TSS) treated forests. An untreated primary forest was included as a control, result- ing in three forest management systems. Lianas with diameter 〉2 cm were identified in ten 40 × 40 m2 plots within each management system. Liana cutting signifi- cantly reduced liana species richness, Shannon diversity index, and basal area in the LT forest after two decades. However, liana species richness and basal area werecomparable in the TSS treated and untreated forests, indi- cating significant recovery in the former after over six decades. Sφrensen similarity index of liana species com- position between the untreated forest and each of the treated forests was moderate. Our findings suggest that liana cutting most likely influenced the dominance of some liana species. In view of the adverse impact of blanket liana cutting on liana diversity, selective liana cutting is rec- ommended as a means of controlling liana numbers while maintaining liana diversity.
基金supported financially by the Program of Introducing Talents of Discipline to Universities (B08037)
文摘To understand the impacts of reforestation on woody species composition,species diversity and community structure,seven plantation forests in dryhot valley of the Jinsha River in Southwest China were investigated,with adjacent wastelands,natural shrub grassland and a natural forest as references.Species importance value,species richness,species heterogeneity and Sorenson similarity index between plantations and the natural forest were analyzed.Results indicated that compared to wastelands and natural shrub grassland,reforestation improved species diversity and community structure,and more forest woody species found suitable habitats in plantations.Species diversity in understory of plantations and Sorenson similarity index were significantly negatively correlated with stem density in mature plantations(26-31 years old).Higher species diversity and Sorenson similarity index existed in mature sparse plantations due to lower stem density and more tree species planted initially.In contrast,reference natural forest,with species heterogeneity of 2.28 for shrub layer,showed the highest species diversity.It would take a long time for species composition and diversity to recover through reforestation in a dry-hot valley.Therefore,it was essential to protect remnant natural forests strictly and reforest with suitable management such as lower stem density and increasing genetic diversity of trees planted.
基金by the Province of British Columbia(BC Ministry of Forests,Lands,Natural Resource Operations and Rural DevelopmentBC Forest Investment Account,Land Based Investment ProgramBC Forest Science Program),the University of British Columbia and forest companies(Cascadia Forest Products,MacMillan Bloedel Limited,Western Forest Products Inc.,Weyerhaeuser Company).Other than the scientists and field personnel directly involved in the research,the funding bodies did not have a role in the design of the studies,in the collection,analysis,and interpretation of data,and in writing the manuscript.
文摘Stand-level retention is an important component of sustainable forest management which aims to balance ecological,social and economic objectives.Long-term retention of mature forest structures at the time of harvesting(variable retention)is intended to produce future forest stands that more closely resemble conditions that develop after natural disturbances,thereby maintaining greater diversity of habitats for a variety of organisms.Structure includes features such as live and dead trees representing multiple canopy layers,undisturbed understory vegetation and coarse woody debris.Over the past two decades,variable retention has become common on forest lands in the temperate rainforests of coastal British Columbia(BC)and has been applied to a lesser extent in inland forest types.Our review of studies in BC and in similar forest types in our region indicates that both aggregated and dispersed retention can contribute to biodiversity conservation by providing short-term‘life-boating’habitat for some species and by enhancing the structural characteristics of future stands.For example,greater abundance of species present in the pre-harvest forest have been documented for vegetation,birds,carabid beetles,gastropods,ectomycorrhizal fungi and soil fauna in retention cutblocks compared to clearcuts.There are,however,some negative consequences for timber production such as wind damage to retained trees and reduced growth rates of tree regeneration compared to clearcuts.The authors suggest an adaptive management approach for balancing competing objectives when faced with uncertainty.This includes monitoring the implementation and effectiveness of various strategies for achieving goals.Over two decades of experience applying variable retention harvesting to industrial-scale management of forest lands in BC suggests that it is possible to balance production of wood with biodiversity conservation.
文摘Variable retention harvesting is a silvicultural system that focuses on retaining key elements of stand structure at the time of logging and is increasingly being used worldwide.We describe the design and establishment of a variable retention harvesting experiment established in the Mountain Ash(Eucalyptus regnans)forests of the Central Highlands of Victoria,south-eastern Australia.The experiment was instigated in 2003,and the work to date has shown that it has environmental benefits for certain groups of small mammals,birds,and vascular plants.The experiment has been integrated with an ongoing long-term monitoring program as well as other experiments such as those in post-fire salvage-logged areas.Collectively,the results of various studies suggest that the potential value of variable retention harvesting extends beyond green-tree logging to post-fire salvage logging environments.We outline some of the challenges in,and new perspectives derived from,implementing and maintaining our experiment.This included difficulties protecting islands from high-intensity post-harvest regeneration burns and threat of declining funding undermining ongoing project viability.A critically important perspective concerns the ecological and economic context in which variable retention harvesting is implemented.In the particular case of Mountain Ash forests,assessments using formal IUCN criteria classify the ecosystem as being Critically Endangered under the Red Listed Ecosystem approach.As a result,Mountain Ash forests are at a high risk of ecosystem collapse.Further logging will increase that risk,making the basis for continued harvesting questionable.In addition,economic analyses suggest that the value of natural assets,like water production,far outweigh the value of the wood products harvested from the Mountain Ash ecosystem,again leading to questions about the viability of ongoing harvesting.We therefore conclude that whilst variable retention harvesting has the potential to contribute to biodiversity conservation in Mountain Ash forests,broader ecological and economic contextual issues(such as the values of competing resources like water yields and the heavily degraded state of the forest)may erode the case for its broader application.