期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Observations and Modeling of Incoming Longwave Radiation to Snow Beneath Forest Canopies in the West Tianshan Mountains, China 被引量:3
1
作者 LU Heng WEI Wen-shou +2 位作者 LIU Ming-zhe HAN Xi HONG Wen 《Journal of Mountain Science》 SCIE CSCD 2014年第5期1138-1153,共16页
Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this pape... Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this paper, we measured and simulated the incoming longwave radiation to snow beneath forest at different canopy openness in the west Tianshan Mountains, China(43°16'N, 84°24'E) during spring 2013. A sensitivity study was conducted to explore the way that terrain influenced the incoming longwave radiation to snow beneath forest canopies. In the simulation model, measurement datasets, including air temperature, incoming shortwave radiation above canopy, and longwave radiation enhanced by adjacent terrain, were applied to calculate the incoming longwave radiation to snow beneath forest canopy. The simulation results were consistent with the measurements on hourly scale and daily scale. The effect of longwave radiation enhanced by terrain was important than that of shortwave radiation above forest canopy with different openness except the 20% canopy openness. The longwave radiation enhanced due to adjacent terrain increases with the slope increase and temperature rise. When air temperature(or slope) is relatively low, thelongwave radiation enhanced by adjacent terrain is not sensitive to slope(or air temperature), but the sensitivity increases with the decrease of snow cover area on sunny slope. The effect of longwave radiation is especially sensitive when the snow cover on sunny slope melts completely. The effect of incoming shortwave radiation reflected by adjacent terrain on incoming longwave radiation to snow beneath forest canopies is more slight than that of the enhanced longwave radiation. 展开更多
关键词 Incoming longwave radiation Snow beneath forest canopy Simulation model Complex topography Sensitivity study
下载PDF
Feature analysis of LIDAR waveforms from forest canopies 被引量:6
2
作者 LIU QingWang LI ZengYuan +3 位作者 CHEN ErXue PANG Yong LI ShiMing TIAN Xin 《Science China Earth Sciences》 SCIE EI CAS 2011年第8期1206-1214,共9页
Airborne light detection and ranging (LIDAR) can detect the three-dimensional structure of forest canopies by transmitting laser pulses and receiving returned waveforms which contain backscatter from branches and leav... Airborne light detection and ranging (LIDAR) can detect the three-dimensional structure of forest canopies by transmitting laser pulses and receiving returned waveforms which contain backscatter from branches and leaves at different heights.We established a solid scatterer model to explain the widened durations found in analyzing the relationship between laser pulses and forest canopies,and obtained the corresponding rule between laser pulse duration and scatterer depth.Based on returned waveform characteristics,scatterers were classified into three types:simple,solid and complex.We developed single-peak derivative and multiple-peak derivative analysis methods to retrieve waveform features and discriminate between scatterer types.Solid scatterer simulations showed that the returned waveforms were widened as scatterer depth increased,and as space between sub-scatterers increased the returned waveforms developed two peaks which subsequently developed into two separate sub-waveforms.There were slight differences between the durations of simulated and measured waveforms.LIDAR waveform data are able to describe the backscatter characteristics of forest canopies,and have potential to improve the estimation accuracy of forest parameters. 展开更多
关键词 remote sensing forest canopy LIDAR waveform feature solid scatterer
原文传递
Forest height mapping using inventory and multi-source satellite data over Hunan Province in southern China 被引量:5
3
作者 Wenli Huang Wankun Min +4 位作者 Jiaqi Ding Yingchun Liu Yang Hu Wenjian Ni Huanfeng Shen 《Forest Ecosystems》 SCIE CSCD 2022年第1期57-70,共14页
Background:Accurate mapping of forest canopy heights at a fine spatial resolution over large geographical areas is challenging.It is essential for the estimation of forest aboveground biomass and the evaluation of for... Background:Accurate mapping of forest canopy heights at a fine spatial resolution over large geographical areas is challenging.It is essential for the estimation of forest aboveground biomass and the evaluation of forest ecosystems.Yet current regional to national scale forest height maps were mainly produced at coarse-scale.Such maps lack spatial details for decision-making at local scales.Recent advances in remote sensing provide great opportunities to fill this gap.Method:In this study,we evaluated the utility of multi-source satellite data for mapping forest heights over Hunan Province in China.A total of 523 plot data collected from 2017 to 2018 were utilized for calibration and validation of forest height models.Specifically,the relationships between three types of in-situ measured tree heights(maximum-,averaged-,and basal area-weighted-tree heights)and plot-level remote sensing metrics(multispectral,radar,and topo variables from Landsat,Sentinel-1/PALSAR-2,and SRTM)were analyzed.Three types of models(multilinear regression,random forest,and support vector regression)were evaluated.Feature variables were selected by two types of variable selection approaches(stepwise regression and random forest).Model parameters and model performances for different models were tuned and evaluated via a 10-fold cross-validation approach.Then,tuned models were applied to generate wall-to-wall forest height maps for Hunan Province.Results:The best estimation of plot-level tree heights(R2 ranged from 0.47 to 0.52,RMSE ranged from 3.8 to 5.3 m,and rRMSE ranged from 28%to 31%)was achieved using the random forest model.A comparison with existing forest height maps showed similar estimates of mean height,however,the ranges varied under different definitions of forest and types of tree height.Conclusions:Primary results indicate that there are small biases in estimated heights at the province scale.This study provides a framework toward establishing regional to national scale maps of vertical forest structure. 展开更多
关键词 forest canopy height Hunan province Landsat ARD PALSAR-2 Sentinel-1
下载PDF
Factorial analysis on forest canopy density restoration in the burned area of northern Great Xing'an Mountains, China 被引量:2
4
作者 XIEFu-ju XIAODu-ning +2 位作者 LIXiu-zhen WANGXu-gao SHIBao-dong 《Journal of Forestry Research》 SCIE CAS CSCD 2005年第2期125-131,共7页
The restoration of forest landscape has drawn much attention since thecatastrophic fire took place on the northern slope of Great Xing'an Mountains in 1987. Forest canopydensity, which has close relation to forest... The restoration of forest landscape has drawn much attention since thecatastrophic fire took place on the northern slope of Great Xing'an Mountains in 1987. Forest canopydensity, which has close relation to forest productivity, was selected as a key factor to find howmuch the forest quality was changed 13 years after fire, and how fire severity, regeneration way andterrain factors influenced the restoration of forest canopy density, based on forest inventory datain China, and using Kendall Bivariate Correlation Analysis, and Distances Correlation Analysis. Theresults showed that fire severity which was inversely correlated with forest canopy density gradewas an initial factor among all that selected. Regeneration way which did not remarkably affectforest canopy density restoration in short period, may shorten the cycle of forest succession andpromote the forest productivity of conophorium in the future. Among the three terrain factors, theeffect of slope was the strongest, the position on slope was the second and the aspect was the last. 展开更多
关键词 forest fire burned area productivity restoration forest canopy density factorial analysis kendall correlation analysis
下载PDF
Variation in photosynthetic photon flux density within a tropical seasonal rain forest of Xishuangbanna, south-western China 被引量:2
5
作者 DOU Jun-xia ZHANG Yi-ping +1 位作者 FENG Zong-wei LIU Wen-jie 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期966-969,共4页
The effects of canopy development, solar angle, and weather conditions on temporal variation in photosynthetic photon flux density(PPFD) at three heights within a tropical rain forest canopy in Xishuangbanna, China,... The effects of canopy development, solar angle, and weather conditions on temporal variation in photosynthetic photon flux density(PPFD) at three heights within a tropical rain forest canopy in Xishuangbanna, China, were examined. PPFD was measured every second and stored as 10-min averages from 1 December 2002 to 30 November 2003. PPFD variability was examined at three different temporal scales. Specific days in March, September, and December with clear and overcast sky conditions were selected to separate the effects of leaf area index(LAI) and solar angle on diurnal variability. On both clear and overcast days, mean daily average PPFD was significantly different between March and September at all heights, except 10 m on clear days, suggesting that LAI directly influences PPFD. In contrast, the differences in daily average PPFD among three heights between September and December were likely due to variation in solar angle. In addition, daily average PPFD at all locations were significantly lower under overcast than clear sky conditions in March, September and December. Over the year-long study, the mean daily total PPFD at 2! m, 10 m and 4 m was 2.8, 2.7 and 0.7 mol/(m^2·d), which accounted for 9.7%, 9.4% and 2.4% of the daily PPFD above the canopy, respectively. Significant differences in mean daily total PPFD occurred at the same heights among different seasons, and diurnal, day-to-day and seasonal PPFD varied at different heights within the canopy. The possible effects of light variability on physiological and morphological responses of plants are discussed. 展开更多
关键词 photosynthetic photon flux density temporal light variability tropical seasonal rain forest canopy XISHUANGBANNA
下载PDF
Measuring the Accuracy and Precision of the Garmin GPS Positioning in Forested Areas: A Case Study in Taxiarchis-Vrastama University Forest 被引量:2
6
作者 Vasileios C. Drosos Chrisvaladis Malesios 《Journal of Environmental Science and Engineering(B)》 2012年第4期566-576,共11页
In this paper, it is attempted to examine and compare different orientation, one recreational and another more precise, in the performance of two (global positioning system) receivers of forested areas. In doing thi... In this paper, it is attempted to examine and compare different orientation, one recreational and another more precise, in the performance of two (global positioning system) receivers of forested areas. In doing this, a field test on horizontal and vertical positional errors of GPS positioning at different points in the forested area of Taxiarchis-Vrastama University forest was conducted. The two GPS receivers were used to determine the positional accuracy of a selected number of points under tree canopies. Specifically, the precision and accuracy of Garmin's GPS positioning at different points were calculated and compared with the corresponding positioning and accuracy of another GPS system, namely the TOPCON GPS. By the calculation of various measures of accuracy and precision suitable for GPS receivers and the use of statistical methods, accuracy between the different receivers differed significantly is shown. Also, regression analysis revealed that the basal area and the number of available satellites are the most important factors for predicting position error. 展开更多
关键词 ACCURACY GPS PRECISION positioning under forest canopy.
下载PDF
Species diversity, regeneration and dominance as influenced by canopy gaps and their characteristics in tropical evergreen forests of Western Ghats, India 被引量:10
7
作者 Guddappa Mahalingappa Devagiri Anil Kumar Khaple +4 位作者 Siddagangaiah Mohan Puttanaik Venkateshamurthy Sanjay Tomar Arkalgud Nagaraja Arunkumar Geeta Joshi 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第4期799-810,共12页
Canopy gaps play a significant role in maintaining structure and composition of tropical forests. This study was carried out in tropical evergreen forests of central Western Ghats in India to understand the influence ... Canopy gaps play a significant role in maintaining structure and composition of tropical forests. This study was carried out in tropical evergreen forests of central Western Ghats in India to understand the influence of canopy gap size and the relationship of gap regime attributes to diversity measures and regeneration. The average gap size in the study area was found to be 396 m2 and around half of gaps were 4–8 years old. Gaps created by natural single tree fall were smaller in size but significantly higher in number. Diversity and regeneration of woody species were compared with canopy gaps and intact vegetation. Species richness and diversity was higher in gaps than in intact vegetation. Macaranga peltata, a shade intolerant species dominated gaps while intact vegetation was dominated by shade tolerant Kingiodendron pinnatum.Gap size significantly influenced species diversity and regeneration. Gap area and age were significantly and negatively correlated with diversity measures but positively correlated with regeneration. Among all the attributes of gaps, regeneration was significantly positively correlated with light intensity. Gaps maintained species diversity and favored regeneration of woody species. In addition to gap size and age, other gap ecological attributes also affected species diversity and regeneration. 展开更多
关键词 canopy forests regeneration dominance tropical woody vegetation intact Species dominated
下载PDF
Homeward bound:canopy cover and species identity influence non-breeding season homing success and speed in forest birds 被引量:1
8
作者 Jin Bai Chelsea A.Weitekamp +1 位作者 Kelly Frye Kathryn E.Sieving 《Avian Research》 CSCD 2021年第2期173-180,共8页
Background:Efficient and safe movement is fundamental for wild birds to thrive in their environments.For arboreal forest animals,especially birds,canopy cover has a large impact on birds’daily movements and is a cruc... Background:Efficient and safe movement is fundamental for wild birds to thrive in their environments.For arboreal forest animals,especially birds,canopy cover has a large impact on birds’daily movements and is a crucial component of conservation strategies seeking to retain avian population in disturbed or urban habitats.Methods:We translocated woodland bird species utilizing different forest strata during two non-breeding seasons in Gainesville,FL,USA.We used linear model and generalized linear model to examine the effects of canopy cover and species identity on homing success and speed.Results:Among our study species of Tufted Titmouse(Baeolophus bicolor),Carolina Chickadee(Poecile carolinensis),and Northern Cardinal(Cardinalis cardinalis),we found that Carolina Chickadees and Tufted Titmice were more likely to return than Northern Cardinals.Among birds that successfully returned,homing speed is significantly affected by forest canopy cover and species identity(titmice had higher homing speed than cardinals).Birds return much faster in landscape with higher canopy cover.Conclusions:This study presented evidence of species identity’s effect on homing success and speed in common feeder bird species in Southeast US and provided further evidence that bird movements in the suburban land cover are constrained by low canopy cover. 展开更多
关键词 forest bird movement forest canopy cover Homing behaviour Non-breeding season Site fidelity
下载PDF
Diversity and production in an Afromontane Forest 被引量:6
9
作者 Klaus v.Gadow GongQiao Zhang +2 位作者 Graham Durrheim David Drew Armin Seydack 《Forest Ecosystems》 SCIE CSCD 2016年第4期275-286,共12页
Background:This contribution evaluates the effect of forest structure and tree species diversity on plot productivity and individual tree growth in the unique Knysna forests in Southern Africa using mapped tree data ... Background:This contribution evaluates the effect of forest structure and tree species diversity on plot productivity and individual tree growth in the unique Knysna forests in Southern Africa using mapped tree data from an observational study that has been re-measured over a period of 40 years.Methods:The effects of tree species diversity and forest structure on tree growth and forest production are evaluated on three levels of resolution:a) the forest community(canopy,sub-canopy species),b) the subplots(number of trees per ha,skewness of the diameter distribution,diameter coefficient of variation) and c) the immediate neighborhood of selected reference trees("Mingling","Dominance",Aggregation" and "Size Variation").Results:An analysis of the community level identified two distinct clusters,one including dominant/canopy species with the highest growth rates and a greater variation of growth,and another cluster which includes the remaining subcanopy species which have a smaller maximum size and lower rates of growth.The area-based structure variables on plot level have a highly significant effect on total basal area growth.However,the effects of forest density and species richness on productivity were not straight forward.Maximum basal area production of about 0.75 m^2/ha/year is achieved at medium levels of richness(around 20 species per ha) and medium levels of density(around 30 m^2/ha basal area) using percentile regression estimates.The relative "Dominance" of a selected reference tree had a highly significant effect on individual tree growth on all investigated species.Other neighbourhood structure variables were only occasionally significant or not significant at all.Conclusion:This contribution presents a new theoretical framework for analysing natural forests that includes community,plot and neighborhood variables of forest structure and diversity,and a first specific analysis of the structure and dynamics of the Knysna Afromontane Forest,based on a unique set of longterm observations.The species-area(SAR) model developed in this study,represents a new general approach that can be used to derive a common standard of tree species diversity for different plot sizes,the species richness per hectare. 展开更多
关键词 canopy neighborhood forests richness basal straight productivity occasionally remaining tropical
下载PDF
Modeling frequency distributions of tree height, diameter and crown area by six probability functions for open forests of Quercus persica in Iran 被引量:1
10
作者 Mehrdad Mirzaei Jalal Aziz +1 位作者 Ali Mahdavi Asma Mohammad Rad 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第4期901-906,共6页
The prediction of the distribution of quantitative variables in a forest stand is of great interest to forest managers, for the evaluation of forest resources and scheduling of future silvicultural treatments. The aim... The prediction of the distribution of quantitative variables in a forest stand is of great interest to forest managers, for the evaluation of forest resources and scheduling of future silvicultural treatments. The aim of this research was to model the distribution of quantitative variables for Quercus persica in open forests in Iran. To investigate the probability distribution of trees in natural stands, 642 trees were selected for measurement using a systematic random sampling method. Selected trees were measured and data were analyzed. Gamma, beta, normal,lognormal, exponential and Weibull probability distributions were fitted to the height distribution of trees. Variables of distribution functions were estimated using the maximum likelihood estimation method. Actual probability and probability which derived from functions was compared using Kolmogorov–Smirnov and Anderson–Darling tests. Beta, Weibull and Weibull probability distributions explained the distributions of tree height, DBH and crown area. 展开更多
关键词 forests Quercus stands crown canopy Weibull Kolmogorov Darling exponential fitted
下载PDF
Effects of forest canopy density and epixylic vegetation on nutrient concentrations in decaying logs of a subalpine fir forest
11
作者 Zhuang Wang Wanqin Yang +6 位作者 Bo Tan Qin Wang Lifeng Wang Chenhui Chang Rui Cao Yurui Jiang Jörg Müller 《Forest Ecosystems》 SCIE CSCD 2022年第5期666-673,共8页
Background:Deadwood and the associated epixylic vegetation influence nutrient cycles in forest ecosystems.Open canopies strongly regulate deadwood decomposition and disrupt epixylic vegetation on logs.However,it is un... Background:Deadwood and the associated epixylic vegetation influence nutrient cycles in forest ecosystems.Open canopies strongly regulate deadwood decomposition and disrupt epixylic vegetation on logs.However,it is unclear how the forest canopy density and epixylic vegetation growth affect the nutrient concentrations in deadwood.Methods:We measured the concentrations of nitrogen(N),phosphorus(P),potassium(K),calcium(Ca),sodium(Na),magnesium(Mg),and manganese(Mn)in experimentally exposed decaying logs placed in gaps,at the edge of gaps,and under the closed canopy during a four-year decomposition experiment in a Subalpine Faxon fir forest(Abies fargesii var.faxoniana)on the eastern Qinghai-Tibetan Plateau,China.To assess the effect of the epixylic vegetation,we experimentally removed it from half of the logs used in the study.Results:Under open canopy conditions in the gap and at the edge,the concentrations for most of the nutrients in the bark and the highly decayed wood were lower than under the closed canopy.The effect of the epixylic treatment on nutrient concentrations for all but K and Na in barks varied with the decay classes.Significantly lower concentrations of N,P,Ca,and Mn following the removal of epixylic vegetation were observed in the wood of decay class IV.Epixylic vegetation significantly increased most nutrient concentrations for decaying barks and wood under open canopy conditions.In contrast,epixylic vegetation had no or minimal effects under the closed canopy.Conclusions:Forest canopy density and epixylic vegetation significantly alter the nutrient concentrations in decaying logs.Open canopies likely accelerate the rate of nutrient cycling between the epixylic vegetation and decaying logs in subalpine forests. 展开更多
关键词 Coarse woody debris Natural disturbance forest canopy density Epixylic vegetation Nutrient concentrations
下载PDF
Dominance-caused differences in transpiration of trees in a Karst broadleaved mixed forest
12
作者 Yanhui Liu Fangjun Ding +4 位作者 Deyuan Shu Wenjun Zhao Yingchun Chui Yiju Hou Peng Wu 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第6期2083-2095,共13页
Estimating stand transpiration of natural forests using traditional methods through up-scaling of sap fl ux density from sample trees based on stand sapwood area only is diffi cult because of the complexity of species... Estimating stand transpiration of natural forests using traditional methods through up-scaling of sap fl ux density from sample trees based on stand sapwood area only is diffi cult because of the complexity of species,ages,and hierarchical structure of natural forests.To improve stand transpiration estimation,we developed an up-scaling method by considering the tree dominance eff ect based on the assumption that individual tree transpiration is aff ected by crown dominance and species,in addition to factors previously considered such as meteorological conditions,sapwood area,and soil moisture.In this study,the meteorological factors,soil moisture,and sap fl ux density of 15 sample trees of diff erent species and dominance in a natural evergreen and deciduous broadleaved mixed forest were simultaneously monitored from March 2012 to February 2014 in the Karst mountain region in southwestern China.After establishing a single tree transpiration model which considers the eff ects of dominance and species,an up-scaling method was explored to estimate stand transpiration.The results show that the transpiration intensity increased exponentially with increasing tree dominance.The contribution to annual stand transpiration from a few dominant trees(5.4%of trees, 28.2% of basal area) was up to 65.0%. The correspondingcontribution was 16.2% from sub-dominant trees(7.6% of trees, 16.2% of basal area) and 22.8% from middleandlower-layer trees (87.0% of trees, 55.6% of basal area).The variation of individual tree transpiration was mainly(97.9%) explained by tree dominance, but very weakly bytree species. The estimated annual stand transpiration was300.2 mm when using the newly developed method whichconsiders tree dominance, 52.5 mm (14.9%) lower than theestimation (352.7 mm) of traditional method which considersonly the sapwood area eff ect, and 8.5 mm (2.7%) lowerthan the estimation (308.6 mm) which considers the eff ectsof both species composition and sapwood area. The maintree characteristics aff ecting stand transpiration are tree size(sapwood area) and dominance. Consideration of tree dominancewill signifi cantly improve stand transpiration estimationand provide a more solid basis for guiding integratedforest-water management at stand scale. 展开更多
关键词 Karst broadleaved mixed forest forest canopy layer Tree dominance Sap fl ow Tree transpiration forest water use
下载PDF
Forest Canopy Flow Analysis Using Turbulence Model with Source/Sink Terms
13
作者 杨会 付海明 《Journal of Donghua University(English Edition)》 EI CAS 2015年第4期588-593,共6页
A computational fluid dynamics( CFD) model was presented to simulate wind flow over a forest canopy for analyzing the wind flow within and above forest canopies. Unlike previous studies on the canopy flow,the effect o... A computational fluid dynamics( CFD) model was presented to simulate wind flow over a forest canopy for analyzing the wind flow within and above forest canopies. Unlike previous studies on the canopy flow,the effect of canopy contour on the canopy was considered to develop the simulation method into a more general but complex case of wind flow over a forest canopy,using cedrus deodara and cinnamomum camphora. The desire of this work is mainly motivated to provide a rational way for predicting the wind flow within and above vegetation canopies. The model of canopy is not incorporated in the geometrical model,and it uses a porous domain combined with k-ε two-equation turbulence model with source / sink terms. The objectives of this paper are to analyze the contour of pressure and velocity and compare the simulation results with other works and field measurements. Results are encouraging,as the model profiles of mean velocity( u) qualitatively agree well with other works compared with and quantitatively have similar explanations as several authors. In conclusion, it is demonstrated that the adoption turbulence model with source / sink terms for forest canopies is proved to be a physically accurate and numerically robust method. The model and method are recommended for future use in simulating turbulent flows in forest canopies. 展开更多
关键词 k-ε source / sink terms mean velocity forest canopy
下载PDF
The Spatial-Temporal Heterogeneity of Understory Light Availability in a Temperate Forest of North China
14
作者 Jie Li Ziyu Zhou +2 位作者 Yun Chen Qiusheng Yang Carlos Alberto Busso 《Phyton-International Journal of Experimental Botany》 SCIE 2021年第6期1633-1644,共12页
The spatial-temporal variation of understory light availability has important influences on species diversity and community assembly.However,the distribution characteristics and influencing factors of understory light... The spatial-temporal variation of understory light availability has important influences on species diversity and community assembly.However,the distribution characteristics and influencing factors of understory light availability have not been fully elucidated,especially in temperate deciduous,broad-leaved forests.In this study,the understory light availability was monitored monthly(May–October)in a temperate deciduous,broad-leaved forest in Henan Province,China.Differences in the light availability among different months and habitat types were statistically analyzed using Kruskal–Wallis method,respectively.Partial least squares path modeling(PLS-PM)was used to explore the direct and/or indirect effects of stand structure,dominant species and topographic factors on the light environment.Results showed that there were differences in light environments among the four habitat types and during the studied six months.The PLS-PM results showed that the stand structure and the dominant species were negatively correlated with the light environment,and the path coefficient values were−0.089(P=0.042)and−0.130(P=0.004),respectively.Our result indicated that the understory light availability exhibit a distinct spatial and temporal heterogeneity in temperate deciduous,broad-leaved forest of north China.The characteristics of woody plant community,especially the abundance of one of the dominant plant species,were the important factors affecting the understory light availability. 展开更多
关键词 Dominant species forest canopy stand structure forest dynamic monitoring plot
下载PDF
An Evaluation of Crown Structure and Site Index to Determine Crown Closure in Eucalyptus urophylla × E. grandis Stands in Guangxi,China 被引量:2
15
作者 陶玉华 Roger WILLIAMS +12 位作者 Carol BROWN 曹书阁 Rachael CRANE Raymond DUVAL Dani FLOWERS Jonathan FRANKO Rachel HEFFLINGER Jonathan JOO Anne MAURO Crista RIEDY Margaret SMYTH Shawn STONE 谭丽凤 《Agricultural Science & Technology》 CAS 2014年第6期1005-1011,共7页
Eucalyptus forests are grown in many parts of the world for their commercial value and use in construction projects. Density management becomes im- portant as a means to attain the management goals in these forests. C... Eucalyptus forests are grown in many parts of the world for their commercial value and use in construction projects. Density management becomes im- portant as a means to attain the management goals in these forests. Changes in canopy and tree crown structure were quantified for Eucalyptus urophylla x E. grandis forests at different ages to determine when canopy closure occurs and the onset of competition begins. Site index was developed for these forests to determine whether site quality affects the canopy structure. Site index had little effect in the forests sampled, with the forest canopy on the better sites becoming slightly more elongated. Based upon crown projection ratio and crown diameter: dbh (diameter at breast height) ratio, it appears that crown closure occurs by age 4 years in these forests. The age at which this occurs was also checked and verified with the evaluation of relative spacing, RS (the ratio of the mean distance between trees to the average dominant height of the stand). The RS value displayed a rapid decline until age 4 years, and then became relatively flat through age 21 years. The rapid height growth during the first 3 years with no change in density accounted for this rapid decrease. By age 4 years, reductions in the number of trees due to mortality began to have more of an influence on this value, resulting in a more gradual de- cline. The implications for management are discussed. 展开更多
关键词 Site index Crown structure forest canopy Relative spacing Crownclosure
下载PDF
Anthropogenic disturbances and their impact on vegetation in Western Himalaya,India 被引量:1
16
作者 Zubair A.MALIK Rajiv PANDEY Ajay Ballabh BHATT 《Journal of Mountain Science》 SCIE CSCD 2016年第1期69-82,共14页
The present study assesses anthropogenic disturbances and their impacts on the vegetation in Western Himalaya,India on the basis of various disturbance parameters such as density,Total Basal Cover(TBC) of cut stumps,l... The present study assesses anthropogenic disturbances and their impacts on the vegetation in Western Himalaya,India on the basis of various disturbance parameters such as density,Total Basal Cover(TBC) of cut stumps,lopping percentage and grazing intensities.On the basis of canopy cover and frequency of disturbances(%),the studied forests were divided into highly disturbed(HD),moderately disturbed(MD) and least disturbed(LD) categories.The HD forests had the lowest canopy cover,lowest density and lowest TBC and the LD had the highest canopy cover,highest density and highest TBC.The MD forests occupied the intermediate position with respect to these parameters.Species richness was least in HD forests,highest in one of the MD forests while LD forest occupied an intermediate position.The percentage of regenerating species was lowest(54%) in HD and highest(72%) in MD.The density of seedlings and saplings was higher in one of the MD forests as compared to HD and LD.We concluded that the moderate disturbances do not affect the vegetation adversely;however the increased degree of disturbance causes loss in plant diversity;affects regeneration and changes community characteristics.Construction of hydroelectric projects at various places in the study area was found to be one of the most important sources of anthropogenic disturbances in addition to the routine anthropogenic disturbances like grazing,fuelwood collection and fodder extraction.If all proposed dams in the Indian Himalaya are constructed combined with weak national environmental impact assessment and implementation,it will result in a significant loss of species.Therefore,various agents of disturbances should be evaluated in cumulative manner and any developmental activities such as hydropower projects,which trigger various natural and anthropogenic disturbances,should be combined with proper cumulative environmental impact assessment and effective implementation to minimise the anticipated loss of vegetation. 展开更多
关键词 forests vegetation canopy grazing anthropogenic disturbance moderately timber woody stands
下载PDF
An Evaluation of Spaceborne Imaging Spectrometry for Estimation of Forest Canopy Nitrogen Concentration in a Subtropical Conifer Plantation of Southern China 被引量:1
17
作者 于泉洲 王绍强 +2 位作者 石浩 黄昆 周蕾 《Journal of Resources and Ecology》 CSCD 2014年第1期1-10,共10页
Canopy foliar Nitrogen Concentration (CNC) is one of the most important parameters influencing vegetation productivity in forest ecosystems. In this study, we explored the potential of imaging spectrometry (hypersp... Canopy foliar Nitrogen Concentration (CNC) is one of the most important parameters influencing vegetation productivity in forest ecosystems. In this study, we explored the potential of imaging spectrometry (hyperspectral) remote sensing of CNC in conifer plantations in China’s subtropical red soil hilly region. Our analysis included data from 57 field plots scattered across two transects covered by Hyperion images. Single regression and partial least squares regression (PLSR) were used to explore the relationships between CNC and hyperspectral data. The correlations between CNC and nearinfrared relfectance (NIR) were consistent in three data subsets (subsets A-C). For all subsets, CNC was signiifcantly positively correlated with NIR in the two transects (R2=0.29, 0.33 and 0.36, P&lt;0.05 or P&lt;0.01, respectively). It suggested that the NIR-CNC relationship exist despite a weak one, and the relationship may be weakened by the single canopy structure. Besides, we also applied a shortwave infrared (SWIR) index - Normalized Difference Nitrogen Index (NDNI) to estimate CNC variation. NDNI presented a signiifcant positive correlation with CNC in different subsets, but like NIR, it was also with low coefifcient of determination (R2=0.38, 0.20 and 0.17, P&lt;0.01, respectively). Also, the correlations between CNC and the entire spectrum reflectance (or its derivative and logarithmic transformation) by PLSR owned different signiifcance in various subsets. We did not ifnd the very robust relationship like previous literatures, so the data we used were checked again. The paired T-test was applied to estimate the inlfuence of inter-annual variability of FNC on the relationships between CNC and Hyperion data. The inter-annual mismatch between period of ifeldwork and Hyperion acquisition had no inlfuence on the correlations of CNC-Hyperion data. Meanwhile, we pointed out that the lack of the canopy structure variation in conifer plantation area may lead to these weak relationships. 展开更多
关键词 HYPERION conifer plantation foliar nitrogen concentration forest canopy HYPERION imaging spectrometry remote sensing
原文传递
Tree diversity increases levels of herbivore damage in a subtropical forest canopy:evidence for dietary mixing by arthropods? 被引量:9
18
作者 Matteo Brezzi Bernhard Schmid +1 位作者 Pascal A.Niklaus Andreas Schuldt 《Journal of Plant Ecology》 SCIE CSCD 2017年第1期13-27,共15页
Aims Plant diversity has been linked to both increasing and decreasing levels of arthropod herbivore damage in different plant communities.So far,these links have mainly been studied in grasslands or in artificial tre... Aims Plant diversity has been linked to both increasing and decreasing levels of arthropod herbivore damage in different plant communities.So far,these links have mainly been studied in grasslands or in artificial tree plantations with low species richness.Furthermore,most studies provide results from newly established experimental plant communities where trophic links are not fully established or from stands of tree saplings that have not yet developed a canopy.Here,we test how tree diversity in a species-rich subtropical forest in China with fully developed tree canopy affects levels of herbivore damage caused by different arthropod feeding guilds.Methods We established 27 plots of 30×30 m area.The plots were selected randomly but with the constraint that they had to span a large range of tree diversity as required for comparative studies in contrast to sample surveys.We recorded herbivore damage caused by arthropod feeding guilds(leaf chewers,leaf skeletonizers and sap feeders)on canopy leaves of all major tree species.Important Findings Levels of herbivore damage increased with tree species richness and tree phylogenetic diversity.These effects were most pronounced for damage caused by leaf chewers.Although the two diversity measures were highly correlated,we additionally found a significant interaction between them,whereby species richness increased herbivory mostly at low levels of phylogenetic diversity.Tree species with the lowest proportion of canopy leaf biomass in a plot tended to suffer the highest levels of herbivore damage,which is in contrast to expectations based on the resource concentration hypothesis.Our results are in agreement with expectations of the dietary mixing hypothesis where generalist herbivores with a broad spectrum of food plants benefit from increased resource diversity in tree species-rich forest patches. 展开更多
关键词 arthropod herbivore damage feeding guilds forest canopy generalist herbivores leaf biomass resource dilution specialist herbivores tree species richness tree phylogenetic diversity
原文传递
Vertical and seasonal distribution of flying beetles in a suburban temperate deciduous forest collected by water pan trap 被引量:2
19
作者 AMINSETYOLEKSONO KENTATAKADA +3 位作者 SHINSAKUKOJI NOBUKAZUNAKAGOSHI TJANDRAANGGRAENI KOJINAKAMURA 《Insect Science》 SCIE CAS CSCD 2005年第3期199-206,共8页
Vertical and seasonal distributions of flying beetles were investigated in asuburban temperate deciduous forest in Kanazawa, Japan using water pan traps to determine the abundance and composition among vertical strata... Vertical and seasonal distributions of flying beetles were investigated in asuburban temperate deciduous forest in Kanazawa, Japan using water pan traps to determine the abundance and composition among vertical strata, change in the abundance and composition through seasons and determinant factors in generating the distributions. Traps were placed at three levels (0.5 m, 10 m, and 20 m above ground) on a tower. Samplings were carried out seasonally from May to November in 1999 and 2000. Variations in the abundance of flying beetles were observed from different layers. The results showed that the abundance and composition of flying beetles varied among strata and seasons. In both 1999 and 2000,Elateridae was consistently most abundant in the bottom layer, while Attelabidae and Cantharidae were most abundant in the upper layer. In 1999, Eucnemidae and overall scavengers were most abundance in the bottom layer, but results were not consistent with those in 2000. In general, the abundance of herbivores reaches a peak in the early season(May/June) and decreases in the following months. Peaks of abundance in predators vary vertically. In the bottom layer a peak was observed in the early season (May/June), while in the upper layer this was observed in July. Scavengers had two peaks, in May/June and September. These patterns indicated that vertical distributions in the abundance of differentfeeding guilds varied through seasons. 展开更多
关键词 COLEOPTERA feeding guilds forest canopy seasonal abundance verticaldistribution water pan trap
原文传递
Elements of disturbance that affect epiphyte vitality in a temperate rainforest:an experimental approach
20
作者 Nalini M.Nadkarni Kevin D.Kohl 《Journal of Plant Ecology》 SCIE CSCD 2019年第2期306-313,共8页
Aims Epiphytes are an abundant and diverse component of many wet temperate forests and have significant roles in ecosystem processes.Little is known about the processes and rates of their death and decomposition when ... Aims Epiphytes are an abundant and diverse component of many wet temperate forests and have significant roles in ecosystem processes.Little is known about the processes and rates of their death and decomposition when they fall from the canopy,which limits our understanding of their role in forest carbon sequestration and nutri-ent cycling.In the temperate rainforest of the Quinault River Valley,Washington State,our aim was to test hypotheses regarding four elements of disturbance that might contribute to their decline.Methods We established set of experiments in which we placed samples of canopy epiphytes and their branch segments:(i)in the canopy versus forest floor microenvironment(stratum);(ii)attached to live versus dead branch substrates;(iii)subjected to physical disruption and‘jarring’;and(iv)in direct versus indirect con-tact with the forest floor.Over the 2-year study,we assigned a non-destructive‘vitality index’(based on color and appar-ent mortality and dryness)to each sample every 2-3 months to compare effects of the experimental treatments and analyzed with a statistical model and post hoc pairwise comparisons of treatments.Important Findings The canopy versus ground stratum and live/dead branch status sig-nificantly affected epiphyte vitality.Effects of physical disruption and ground contact were not significant.There were seasonal effects(low vitality during the sampling times in the summer,revitalization upon sampling times in the winter)for all treatments except samples in contact with the ground.One implication of these results relates to effects of climate change,which is predicted to shift to hotter,drier summers and wetter winters.Climate change may affect forest dynamics and nutrient cycling in unpredictable ways.Results also point to future experiments to understand biotic and abiotic effects on epiphyte disturbance and dynamics. 展开更多
关键词 DISTURBANCE EPIPHYTES forest canopy forest dynamics MOSS Olympic rainforest
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部