Understanding the hydrological processes of forest ecosystems in Tibetan Plateau is crucial for protecting water resources and the environment, especially considering that evapotranspiration is the most dominant hydro...Understanding the hydrological processes of forest ecosystems in Tibetan Plateau is crucial for protecting water resources and the environment, especially considering that evapotranspiration is the most dominant hydrologic process in most forest systems. SHAW, as a physically based, hydrological model, provides a useful tool for understanding and analyzing evapotranspiration processes. Using the measured data of a faber fir forest ecosystem in eastern Tibetan Plateau, this paper assessed the model performance in simulating evapotranspiration and variability and transferability of the model parameters. Comparison of the simulated results by SHAW to the measured data showed that SHAW performed satisfactorily. Based on analyzing the simulated results by the calibrated and validated SHAW, some ET characteristics of faber fir forest ecosys-tem in the eastern Tibetan Plateau were found: 1) Daily plant transpiration is low, and daily ET mainly comes from surface evaporation including canopy, litter and soil evaporation. Peak ET rate was approxi-mately 4mm/day, occurring around late July. 2) Solar radiation is the most important factor accounting for daily ET variation, while air temperature is the secondary, wind speed and air relative humidity are minor and soil water storage is the least important among all the related factors. 3) The ratio of annual ET to pre-cipitation for the faber fir forest ecosystem in eastern Tibetan Plateau is low (18%) compared with the other forest ecosystems owing to high-elevation, high atmospheric humidity and low annual temperature.展开更多
An understanding of the differences in artificial forest between tree species,slope aspects,and management options in arid environments is fundamentally important for efficient management of these artificial systems;h...An understanding of the differences in artificial forest between tree species,slope aspects,and management options in arid environments is fundamentally important for efficient management of these artificial systems;however,few studies have quantified the spatial and temporal differences in stem radial growth of trees in the arid western Loess Plateau of China.Using dendrochronology,we assessed the growth of three woody species(the native shrub Reaumuria soongorica,the exotic shrub Tamarix ramosissima and tree Platycladus orientalis)by measuring the annual stem radial increment.We also describe the long-term growth trends and responses to climatic factors on slopes with different aspects during periods with and without irrigation.We found that precipitation during the main growing season was significantly positively correlated with ring growth for all three species and both slope aspects.In addition,supplemental water(e.g.,irrigation,rainwater harvesting)greatly relieved drought stress and promoted radial growth.Our results suggest that as the main afforestation species in the Loess Plateau used for soil and water conservation,P.orientalis is more suitable than T.ramosissima under rain-fed conditions.However,a landscape that combined a tree(P.orientalis)with a shrub(R.soongorica)and grassland appears likely to represent the best means of ecological restoration in the arid western Loess Plateau.展开更多
Woody debris(WD) is an important par of natural Pinus tabulaeformis mixed stands, and i affects the forest ecosystem stability and developmen The WD spatial patterns are especially importan structural characteristics ...Woody debris(WD) is an important par of natural Pinus tabulaeformis mixed stands, and i affects the forest ecosystem stability and developmen The WD spatial patterns are especially importan structural characteristics that can provide insights into forest dynamics. In this paper, the WD storage WD spatial patterns and WD associations among the main species were examined in the natural secondary forest on Loess Plateau in northwest China. Data were collected in a 1 ha(100 m × 100 m) permanent plot and all the trees with a diameter at breast height o more than 3 cm were measured and stem-mapped Ripley's K functions from the spatial-point-pattern analysis method were used to analyze the spatia distribution and associations. The results showed tha(1) The total storage of WD was 10.73 t/ha, fallen wood was the main source of WD, and the majority diameters were greater than 20 cm, and in intermediate levels of decay;(2) The overall spatia pattern was closely related to the spatial scale, which exhibited an aggregated pattern on a small scale, and a random pattern on a large scale. The spatia patterns of coarse woody debris also gradually transitioned from an aggregated pattern in fine scales to a random pattern in broader spatial scales, which matched the overall spatial pattern. The spatial intensity was gradually decreased with the increasing diameters, and increased with the decomposition classes;(3) The WD of Pinus tabulaeformis species was negatively associated with Betula platyphylla and Populus davidiana on a small scale but positively associated with these species on a large scale. The spatial pattern and interspecies relations were the results of long-term interactions between the natural secondary forest community and the surrounding natural environment. These findings would provide a scientific basis for the sustainable management and protection of natural secondary forest ecosystems on Loess Plateau.展开更多
Using Landsat remote sensing images, we analyzed changes in each land use type and transitions among different land use types during land use and land cover change (LUCC) in Ningwu County, located in the eastern Loe...Using Landsat remote sensing images, we analyzed changes in each land use type and transitions among different land use types during land use and land cover change (LUCC) in Ningwu County, located in the eastern Loess Plateau of China, from 1990 to 2010. We found that grassland, woodland, and farmland were the main land use types in the study area, and the area of each type changed slightly from 1990 to 2010, whereas the area of water, construction land, and unused land increased greatly. For the whole area, the net change and total change were insignificant due to weak human activity intensity in most of the study area, and the LUCC was dominated by quasi-balanced two-way transitions from 1990 to 2010. The insignificant overall amount of LUCC appears to have resulted from offsetting of rapid increases in population, economic growth, and the im- plementation of a program to return farmland to woodland and grassland in 2000. This program converted more farmland into woodland and grassland from 2000 to 2010 than from 1990 to 2000, but reclamation of woodland and grassland for use as farmland continued from 2000 to 2010, and is a cause for concern to the local government.展开更多
Background: The early stage of forest succession following disturbance is characterized by a shift in songbird composition as well as increased avian richness due to increased herbaceous growth in the forest understor...Background: The early stage of forest succession following disturbance is characterized by a shift in songbird composition as well as increased avian richness due to increased herbaceous growth in the forest understory. However, regeneration of woody species eventually outcompetes the herbaceous understory, subsequently shifting vegetation communities and decreasing availability of vital foraging and nesting cover for disturbance-dependent birds, ultimately resulting in their displacement. These early stages following forest disturbance, which are declining throughout the eastern United States, are ephemeral in nature and birds depend on such disturbances for nesting and other purposes throughout their lives.Methods: We investigated the use of a two-stage shelterwood method to manage long-term persistence of seven early successional songbirds over a 13-year period in an upland hardwood forest within the southern end of the midCumberland Plateau in the eastern United States.Results: Canopy and midstory gaps created after initial harvest were quickly exploited by tree growth and canopy cover returned to these areas, accelerating the displacement of early-successional species. Woody stem densities increased substantially following stage two harvest as advanced tree regeneration combined with the re-opening of the overstory layer increased resource competition for early-successional plants in the understory. Carolina Wren(Thryothorus ludovicianus), Eastern Towhee(Pipilo erythrophthalmus), Indigo Bunting(Passerina cyanea), and Yellowbreasted Chat(Icteria virens) were characterized by immediate increases following initial harvest in 2001; while the American Goldfinch(Spinus tristis), Prairie Warbler(Setophaga discolor), and White-eyed Vireo(Vireo griseus) did not show an immediate response. Stage two harvest in 2011 rejuvenated vegetation which benefitted focal species, with six of seven species showing increases in densities between 2010 and 2012.Conclusion: The two-stage shelterwood method created conditions advantageous to early-successional birds by helping to re-establish understory vegetation through periodic disturbance to the canopy layer. This method provides evidence that early-successional species can be managed long-term(> 15 years) while using relatively small spatial disturbance through the two-stage shelterwood method.展开更多
文摘Understanding the hydrological processes of forest ecosystems in Tibetan Plateau is crucial for protecting water resources and the environment, especially considering that evapotranspiration is the most dominant hydrologic process in most forest systems. SHAW, as a physically based, hydrological model, provides a useful tool for understanding and analyzing evapotranspiration processes. Using the measured data of a faber fir forest ecosystem in eastern Tibetan Plateau, this paper assessed the model performance in simulating evapotranspiration and variability and transferability of the model parameters. Comparison of the simulated results by SHAW to the measured data showed that SHAW performed satisfactorily. Based on analyzing the simulated results by the calibrated and validated SHAW, some ET characteristics of faber fir forest ecosys-tem in the eastern Tibetan Plateau were found: 1) Daily plant transpiration is low, and daily ET mainly comes from surface evaporation including canopy, litter and soil evaporation. Peak ET rate was approxi-mately 4mm/day, occurring around late July. 2) Solar radiation is the most important factor accounting for daily ET variation, while air temperature is the secondary, wind speed and air relative humidity are minor and soil water storage is the least important among all the related factors. 3) The ratio of annual ET to pre-cipitation for the faber fir forest ecosystem in eastern Tibetan Plateau is low (18%) compared with the other forest ecosystems owing to high-elevation, high atmospheric humidity and low annual temperature.
基金funded by the National Natural Science Foundation of China(Grant No.41471082)
文摘An understanding of the differences in artificial forest between tree species,slope aspects,and management options in arid environments is fundamentally important for efficient management of these artificial systems;however,few studies have quantified the spatial and temporal differences in stem radial growth of trees in the arid western Loess Plateau of China.Using dendrochronology,we assessed the growth of three woody species(the native shrub Reaumuria soongorica,the exotic shrub Tamarix ramosissima and tree Platycladus orientalis)by measuring the annual stem radial increment.We also describe the long-term growth trends and responses to climatic factors on slopes with different aspects during periods with and without irrigation.We found that precipitation during the main growing season was significantly positively correlated with ring growth for all three species and both slope aspects.In addition,supplemental water(e.g.,irrigation,rainwater harvesting)greatly relieved drought stress and promoted radial growth.Our results suggest that as the main afforestation species in the Loess Plateau used for soil and water conservation,P.orientalis is more suitable than T.ramosissima under rain-fed conditions.However,a landscape that combined a tree(P.orientalis)with a shrub(R.soongorica)and grassland appears likely to represent the best means of ecological restoration in the arid western Loess Plateau.
基金supported by the National Natural Science Foundation of China (Grant No. 31300538, 31400540 and 31170587)the Special Foundation of Basic Scientific Research Professional Expenses in Northwest A&F University (Grant No. QN2013082)the Youth development projects of the second basic scientific research business expenses of Northwest A&F University (Grant No. 2452015335)
文摘Woody debris(WD) is an important par of natural Pinus tabulaeformis mixed stands, and i affects the forest ecosystem stability and developmen The WD spatial patterns are especially importan structural characteristics that can provide insights into forest dynamics. In this paper, the WD storage WD spatial patterns and WD associations among the main species were examined in the natural secondary forest on Loess Plateau in northwest China. Data were collected in a 1 ha(100 m × 100 m) permanent plot and all the trees with a diameter at breast height o more than 3 cm were measured and stem-mapped Ripley's K functions from the spatial-point-pattern analysis method were used to analyze the spatia distribution and associations. The results showed tha(1) The total storage of WD was 10.73 t/ha, fallen wood was the main source of WD, and the majority diameters were greater than 20 cm, and in intermediate levels of decay;(2) The overall spatia pattern was closely related to the spatial scale, which exhibited an aggregated pattern on a small scale, and a random pattern on a large scale. The spatia patterns of coarse woody debris also gradually transitioned from an aggregated pattern in fine scales to a random pattern in broader spatial scales, which matched the overall spatial pattern. The spatial intensity was gradually decreased with the increasing diameters, and increased with the decomposition classes;(3) The WD of Pinus tabulaeformis species was negatively associated with Betula platyphylla and Populus davidiana on a small scale but positively associated with these species on a large scale. The spatial pattern and interspecies relations were the results of long-term interactions between the natural secondary forest community and the surrounding natural environment. These findings would provide a scientific basis for the sustainable management and protection of natural secondary forest ecosystems on Loess Plateau.
基金supported by the Open Fund Project of the Key Laboratory of Desert and Desertification, Chinese Academy of Sciences (No. KLDD-2014-001)the Important Specialized Science and Technology Item of Shanxi Province, China (No. 20121101011)the Natural Science Foundation of China (Nos. 41271513, 41271030)
文摘Using Landsat remote sensing images, we analyzed changes in each land use type and transitions among different land use types during land use and land cover change (LUCC) in Ningwu County, located in the eastern Loess Plateau of China, from 1990 to 2010. We found that grassland, woodland, and farmland were the main land use types in the study area, and the area of each type changed slightly from 1990 to 2010, whereas the area of water, construction land, and unused land increased greatly. For the whole area, the net change and total change were insignificant due to weak human activity intensity in most of the study area, and the LUCC was dominated by quasi-balanced two-way transitions from 1990 to 2010. The insignificant overall amount of LUCC appears to have resulted from offsetting of rapid increases in population, economic growth, and the im- plementation of a program to return farmland to woodland and grassland in 2000. This program converted more farmland into woodland and grassland from 2000 to 2010 than from 1990 to 2000, but reclamation of woodland and grassland for use as farmland continued from 2000 to 2010, and is a cause for concern to the local government.
基金funded by the Center for Forest Ecosystem Assessment(CFEA),USDA Forest Service,and Alabama A&M Universityadditional funding from the Alabama Ornithological Society and Birmingham Audubon Society
文摘Background: The early stage of forest succession following disturbance is characterized by a shift in songbird composition as well as increased avian richness due to increased herbaceous growth in the forest understory. However, regeneration of woody species eventually outcompetes the herbaceous understory, subsequently shifting vegetation communities and decreasing availability of vital foraging and nesting cover for disturbance-dependent birds, ultimately resulting in their displacement. These early stages following forest disturbance, which are declining throughout the eastern United States, are ephemeral in nature and birds depend on such disturbances for nesting and other purposes throughout their lives.Methods: We investigated the use of a two-stage shelterwood method to manage long-term persistence of seven early successional songbirds over a 13-year period in an upland hardwood forest within the southern end of the midCumberland Plateau in the eastern United States.Results: Canopy and midstory gaps created after initial harvest were quickly exploited by tree growth and canopy cover returned to these areas, accelerating the displacement of early-successional species. Woody stem densities increased substantially following stage two harvest as advanced tree regeneration combined with the re-opening of the overstory layer increased resource competition for early-successional plants in the understory. Carolina Wren(Thryothorus ludovicianus), Eastern Towhee(Pipilo erythrophthalmus), Indigo Bunting(Passerina cyanea), and Yellowbreasted Chat(Icteria virens) were characterized by immediate increases following initial harvest in 2001; while the American Goldfinch(Spinus tristis), Prairie Warbler(Setophaga discolor), and White-eyed Vireo(Vireo griseus) did not show an immediate response. Stage two harvest in 2011 rejuvenated vegetation which benefitted focal species, with six of seven species showing increases in densities between 2010 and 2012.Conclusion: The two-stage shelterwood method created conditions advantageous to early-successional birds by helping to re-establish understory vegetation through periodic disturbance to the canopy layer. This method provides evidence that early-successional species can be managed long-term(> 15 years) while using relatively small spatial disturbance through the two-stage shelterwood method.