期刊文献+
共找到509篇文章
< 1 2 26 >
每页显示 20 50 100
Improved Variable Forgetting Factor Proportionate RLS Algorithm with Sparse Penalty and Fast Implementation Using DCD Iterations
1
作者 Han Zhen Zhang Fengrui +2 位作者 Zhang Yu Han Yanfeng Jiang Peng 《China Communications》 SCIE CSCD 2024年第10期16-27,共12页
The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms wit... The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms with a sparse regularization term.In this paper,we propose a variable forgetting factor(VFF)PRLS algorithm with a sparse penalty,e.g.,l_(1)-norm,for sparse identification.To reduce the computation complexity of the proposed algorithm,a fast implementation method based on dichotomous coordinate descent(DCD)algorithm is also derived.Simulation results indicate superior performance of the proposed algorithm. 展开更多
关键词 dichotomous coordinate descent proportionate matrix RLS sparse systems variable forgetting factor
下载PDF
RLS channel estimation with adaptive forgetting factor in space-time coded MIMO-OFDM systems 被引量:2
2
作者 LIANG Yong-ming LUO Han-wen HUANG Jian-guo 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第4期507-515,共9页
Considering that channel estimation plays a crucial role in coherent detection, this paper addresses a method of Recursive-least-squares (RLS) channel estimation with adaptive forgetting factor in wireless space-time ... Considering that channel estimation plays a crucial role in coherent detection, this paper addresses a method of Recursive-least-squares (RLS) channel estimation with adaptive forgetting factor in wireless space-time coded multiple-input and multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Because there are three different forgetting factor scenarios including adaptive, two-step and conventional ones applied to RLS channel estimation, this paper describes the principle of RLS channel estimation and analyzes the impact of different forgetting factor scenarios on the performances of RLS channel estimation. Simulation results proved that the RLS algorithm with adaptive forgetting factor (RLS-A) outperformed that with two-step forgetting factor (RLS-T) or with conventional forgetting factor (RLS-C) in both estimation accuracy and robustness over the multiple-input multiple-output (MIMO) channel, i.e., a wide-sense stationary uncorrelated scattering (WSSUS) and frequency-selective slowly fading channel. Hence, we can employ the RLS-A method by adjusting forgetting factor adaptively to track and estimate channel state parameters successfully in space-time coded MIMO-OFDM systems. 展开更多
关键词 MIMO-OFDM Channel estimation RLS algorithm Adaptive forgetting factor
下载PDF
最小二乘算法优化及其在锂离子电池参数辨识中的应用 被引量:2
3
作者 范兴明 封浩 张鑫 《电工技术学报》 EI CSCD 北大核心 2024年第5期1577-1588,共12页
传统最小二乘法(LS)用于锂离子电池模型在线参数辨识精度低,通过带遗忘因子递推最小二乘算法能够有效地提高辨识精度,但固定的遗忘因子影响模型动态特性。遗忘因子的自适应处理能提高算法对动态系统的参数辨识能力,而目前的自适应方法... 传统最小二乘法(LS)用于锂离子电池模型在线参数辨识精度低,通过带遗忘因子递推最小二乘算法能够有效地提高辨识精度,但固定的遗忘因子影响模型动态特性。遗忘因子的自适应处理能提高算法对动态系统的参数辨识能力,而目前的自适应方法容易忽略模型参数的稳定性,同时方法待定系数范围较大且难以确认。为了得到高精度且稳定性良好的模型参数,该文设计了一种精度和稳定性兼优且更简单的自适应遗忘因子递推最小二乘(AFFRLS)改进方法,并与其他AFFRLS、可变遗忘因子递推最小二乘(VFFRLS)进行仿真对比分析。结果表明,改进的AFFRLS能够在模型精度和参数稳定性取得更好的平衡,且对不同的在线工况具有良好的适用性。 展开更多
关键词 锂离子电池模型 参数辨识 最小二乘法 自适应遗忘因子
下载PDF
基于改进初值带遗忘因子的递推最小二乘法的锂电池参数辨识 被引量:1
4
作者 王文 史华泽 +3 位作者 岳雨霏 黎隆基 吴传平 童宇轩 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期178-186,共9页
锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识... 锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识精度低、收敛速度慢的问题。为此,将电路分析法与FFRLS相结合,提出基于改进初值带遗忘因子的递推最小二乘法(improved initial value-FFRLS,IIV-FFRLS)。首先,通过离线辨识得到各荷电状态点对应的等效电路模型参数并进行多项式拟合;然后,利用初始开路电压(open circuit voltage,OCV)和OCV-SOC曲线获得初始SOC,代入参数拟合函数得到初始参数;最后,将初始参数带入递推公式得到IIV-FFRLS迭代初始值。对4种锂电池工况进行参数辨识,结果表明:与传统方法相比,IIV-FFRLS的平均相对误差、收敛时间分别减小58%、23%以上;IIV-FFRLS具有更高的辨识精度与更快的收敛速度。 展开更多
关键词 锂离子电池 参数辨识 带遗忘因子的递推最小二乘算法 迭代初始值
下载PDF
不均衡小样本下多特征优化选择的生命体触电故障识别方法
5
作者 高伟 饶俊民 +1 位作者 全圣鑫 郭谋发 《电工技术学报》 EI CSCD 北大核心 2024年第7期2060-2071,共12页
针对现有的剩余电流保护装置无法有效识别触电事故的问题,该文提出了一种不均衡小样本下多特征优化选择的生命体触电故障识别方法。首先通过变分自编码器(VAE)对实验收集到的生命体触电小样本数据进行增殖以实现正负样本均衡;然后在时... 针对现有的剩余电流保护装置无法有效识别触电事故的问题,该文提出了一种不均衡小样本下多特征优化选择的生命体触电故障识别方法。首先通过变分自编码器(VAE)对实验收集到的生命体触电小样本数据进行增殖以实现正负样本均衡;然后在时域上提取能够反映波形动态变化特性的23个特征量,并利用高斯核Fisher判别分析(GKFDA)与最大信息系数(MIC)法从中选择最优表达特征组;最后,提出基于遗忘因子的在线顺序极限学习机(FOS-ELM)算法实现生命体触电行为的鉴别。实验结果表明,所提方法利用不均衡小样本触电数据集就可以训练出一个优秀的分类模型,诊断准确率可达98.75%,诊断时间仅为1.33 ms。其优良的性能结合在线增量式学习分类器设计,使得模型具备新知识学习能力,具有极好的工程应用前景。 展开更多
关键词 剩余电流保护装置 生命体触电故障 多特征优化选择 基于遗忘因子的在线顺序 极限学习机(FOS-ELM) 不均衡小样本
下载PDF
基于变遗忘因子的改进卡尔曼滤波锂电池荷电状态估算研究
6
作者 张涛 陈东明 +1 位作者 侯鹏鹏 王尧彬 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第4期126-132,共7页
目的 为了解决锂电池在不同放电阶段和噪声干扰下荷电状态(SOC)估算结果发散问题,方法 通过分析锂电池机理特性,查找影响估算结果的因素和原因。选取适当的数学模型并得到开路电压特性-荷电状态(OCV-SOC)试验曲线后,针对传统算法估算误... 目的 为了解决锂电池在不同放电阶段和噪声干扰下荷电状态(SOC)估算结果发散问题,方法 通过分析锂电池机理特性,查找影响估算结果的因素和原因。选取适当的数学模型并得到开路电压特性-荷电状态(OCV-SOC)试验曲线后,针对传统算法估算误差波动较大的问题,提出变遗忘因子递推最小二乘(VFF-RLS)与自适应平方根无迹卡尔曼滤波(ASRUKF)算法联合估算SOC。结果 以动态应力测试(DST)为例,遗忘因子最小二乘(FFRLS)算法的开路电压初期误差最大值为0.02 V,稳定后端电压误差为0.004~0.010 V,误差收敛时间约45 s;UKF算法的SOC估算初期最大误差为0.03,在400 s左右逐渐收敛到理论值附近,稳定后的波动误差为0.83%;VFF-RLS算法在相同的条件下,开路电压实验初期误差最大值为0.04 V,稳定后端电压误差为0.003~0.007 V,误差收敛时间约10 s;ASRUKF的SOC估算初期最大误差为0.1,随着算法迭代,200 s内收敛到理论值附近,稳定后最大波动误差0.413%。结论 为了保证算法适用的普遍性,在不同初值下观察算法的收敛性,结果表明,在复杂的试验工况下,与传统算法比较,改进算法的参数辨识速度明显加快,精度提高,在估算SOC阶段,波动范围明显变小;在实际值误差较大的情况下,依然能够迅速收敛,证明本文方法的改进切实可行,可用于实际电池研究。 展开更多
关键词 锂电池 变遗忘因子 荷电状态 自适应滤波 平方根滤波
下载PDF
基于改进AFFRLS-AUKF的锂电池SOC估计
7
作者 陈亮 卢玉斌 林正廉 《电源技术》 CAS 北大核心 2024年第6期1109-1115,共7页
准确估计锂电池荷电状态(SOC)是保障电池管理系统安全稳定运行的重要前提之一。为了提高锂离子电池SOC估计精度,提出一种改进自适应遗忘因子最小二乘法(AFFRLS)与自适应无迹卡尔曼滤波算法(AUKF)联合估计锂离子电池SOC的估计方法。利用... 准确估计锂电池荷电状态(SOC)是保障电池管理系统安全稳定运行的重要前提之一。为了提高锂离子电池SOC估计精度,提出一种改进自适应遗忘因子最小二乘法(AFFRLS)与自适应无迹卡尔曼滤波算法(AUKF)联合估计锂离子电池SOC的估计方法。利用改进AFFRLS对已建立的二阶RC等效电路模型进行参数辨识,再结合AUKF估计锂离子电池SOC。通过动态应力测试(DST)工况和城市道路循环(UDDS)工况验证得到联合估计方法的平均绝对误差为0.44%,均方根误差为0.61%,表明改进的AFFRLS-AUKF方法可提高参数辨识及电池SOC估计的准确性和鲁棒性。 展开更多
关键词 锂离子电池 荷电状态 自适应遗忘因子 无迹卡尔曼滤波
下载PDF
基于改进UKF的自动落布车位姿估计
8
作者 沈丹峰 白鹏飞 +1 位作者 赵刚 王博 《纺织高校基础科学学报》 CAS 2024年第3期94-101,106,共9页
自动落布车位姿估计的准确性是影响其在纺织车间内同时定位与地图构建(simultaneous localization and mapping,SLAM)的关键因素。在进行自动落布车位姿估计时,遇到观测噪声异常变化或噪声协方差与算法不匹配等情况时,无迹卡尔曼滤波(un... 自动落布车位姿估计的准确性是影响其在纺织车间内同时定位与地图构建(simultaneous localization and mapping,SLAM)的关键因素。在进行自动落布车位姿估计时,遇到观测噪声异常变化或噪声协方差与算法不匹配等情况时,无迹卡尔曼滤波(unscented Kalman filter,UKF)难以准确估计小车的位置和姿态。针对此问题,将误差序列协方差估计与遗忘因子同时引入UKF进行改进,提出了一种改进的自适应UKF自动落布车位姿估计算法。通过误差序列协方差估计对观测噪声协方差矩阵R进行调整,引入遗忘因子对R进行自适应更新,进而得到自动落布车位姿的最优估计。实验结果表明,在高斯噪声环境下,改进的UKF算法比其他算法具有更好的鲁棒性和估计精度。改进后的UKF位姿估计算法代入Cartographer算法后建图误差值减小,表明此算法能够在室内复杂环境下达到更加精确的位姿估计。 展开更多
关键词 自动落布车 同时定位与建图 位姿估计 无迹卡尔曼滤波 误差序列 遗忘因子
下载PDF
永磁同步电机多参数辨识研究
9
作者 林立 杨阳 +1 位作者 李亚楠 王翔 《邵阳学院学报(自然科学版)》 2024年第2期18-27,共10页
针对表贴式永磁同步电机(surface permanent magnet synchronous motor, SPMSM)在运行过程中参数时变问题,采用带遗忘因子的递推最小二乘法(forgetting factor recursive least squares, FFRLS)在线辨识永磁磁链ψ_f、定子电阻R_s和电感... 针对表贴式永磁同步电机(surface permanent magnet synchronous motor, SPMSM)在运行过程中参数时变问题,采用带遗忘因子的递推最小二乘法(forgetting factor recursive least squares, FFRLS)在线辨识永磁磁链ψ_f、定子电阻R_s和电感L_s。对SPMSM数学模型进行分析,结合空间矢量脉宽调制技术,实现矢量控制;分析不同参数发生变化对电机控制性能的影响,并建立矢量控制策略下FFRLS参数辨识和递推最小二乘法(recursive least squares, RLS)辨识的系统仿真模型,进行对比仿真分析。仿真结果表明,该算法能较好地进行辨识,辨识快速收敛,辨识精度高。 展开更多
关键词 永磁同步电机 参数辨识 递推最小二乘法 遗忘因子
下载PDF
基于等效电路模型和数据驱动模型融合的SOC和SOH联合估计方法 被引量:2
10
作者 刘萍 李泽文 +2 位作者 蔡雨思 王文 夏向阳 《电工技术学报》 EI CSCD 北大核心 2024年第10期3232-3243,共12页
针对电池SOC与SOH估计结果相互影响,单独估计准确度不高的问题,该文提出了一种基于等效电路模型和数据驱动模型融合的SOC和SOH联合估计方法。通过构建考虑老化和SOC的电池二阶RC等效电路模型,采用带遗忘因子的递推最小二乘法,在不同SOC... 针对电池SOC与SOH估计结果相互影响,单独估计准确度不高的问题,该文提出了一种基于等效电路模型和数据驱动模型融合的SOC和SOH联合估计方法。通过构建考虑老化和SOC的电池二阶RC等效电路模型,采用带遗忘因子的递推最小二乘法,在不同SOC和SOH的情况下,对电池的参数进行在线辨识,实现电池参数在线辨识与电池SOC和SOH估计的耦合。以锂离子电池自SOC=20%到恒流充电阶段结束所需时间为输入,电池SOH值为输出,训练GPR模型,实现电池SOH估计。将输出的SOH估计值与电池的额定容量相乘,得到电池的实际容量,更新二阶RC状态空间方程,采用扩展卡尔曼滤波算法对电池进行SOC估计,实现电池SOH估计和SOC估计之间的联合。采用牛津大学电池退化数据集和NASA随机使用电池数据集进行算法验证,结果表明,所提联合估计方法能够在电池的生命周期内较准确地跟随锂离子电池SOC和SOH的真实值。 展开更多
关键词 锂离子电池 荷电状态 健康状态 高斯过程回归 带遗忘因子的递推最小二乘法
下载PDF
基于Flink的动态感知用户兴趣漂移的电影推荐系统
11
作者 李光明 杨攀攀 古婵 《电子器件》 CAS 2024年第5期1425-1433,共9页
传统使用Hadoop平台基于协同过滤算法搭建的分布式推荐系统,存在两个亟待解决的问题:(1)在面对海量数据与复杂的推荐算法模型时,处理数据的速度明显下降,不能做到低延时,无法对用户进行实时推荐;(2)传统基于协同过滤的推荐算法,无法实... 传统使用Hadoop平台基于协同过滤算法搭建的分布式推荐系统,存在两个亟待解决的问题:(1)在面对海量数据与复杂的推荐算法模型时,处理数据的速度明显下降,不能做到低延时,无法对用户进行实时推荐;(2)传统基于协同过滤的推荐算法,无法实时感知用户兴趣漂移的问题,导致推荐的结果差强人意。针对以上两个问题,引入新一代流式计算引擎Flink,使用Spark、Flume、Kafka等大数据组件搭建电影推荐系统,整个推荐系统的推荐算法部分,分为离线与在线推荐两大模块,离线推荐算法引入堆排序,解决MLlib中ALS算法在模型预测时会进行笛卡尔积计算,消耗大量内存与算法执行时间长的问题;实时推荐算法引入艾宾浩斯遗忘曲线,通过融合时间权重与奖惩因子,来动态地感知用户兴趣发生漂移的问题。通过离线与在线推荐算法的改进,产生更好的个性化Top-N推荐结果,提升最终用户的体验。实验结果表明:(1)通过堆排序改进后的离线推荐ALS算法,在RMSE指标基本不变的情况下执行速率显著提高;(2)通过引入艾宾浩斯遗忘曲线,融合时间权重与奖惩因子的实时推荐算法,在准确率和召回率指标上明显提高,推荐结果更符合用户兴趣爱好;(3)Flink计算引擎相比较Spark计算引擎在数据量不断增加的情况下,算法执行速度更快。 展开更多
关键词 Flink 堆排序 艾宾浩斯遗忘曲线 时间权重 奖惩因子
下载PDF
分数一阶电路等效模型估计锂离子电池SOC 被引量:1
12
作者 徐鹏跃 张国玲 +1 位作者 王涛 程佳 《电池》 CAS 北大核心 2024年第1期72-76,共5页
等效电路模型可用于对锂离子电池进行监控和管理,其精度与复杂性至关重要。选用整数一阶、整数二阶和分数一阶等3种电路模型对锂离子电池进行等效建模,采用基于遗忘因子的递推最小二乘(FFRLS)法辨识模型中的参数,并应用辨识所得的参数,... 等效电路模型可用于对锂离子电池进行监控和管理,其精度与复杂性至关重要。选用整数一阶、整数二阶和分数一阶等3种电路模型对锂离子电池进行等效建模,采用基于遗忘因子的递推最小二乘(FFRLS)法辨识模型中的参数,并应用辨识所得的参数,通过扩展卡尔曼滤波算法估计荷电状态(SOC)。对比模型预测的端电压与真实端电压,以及估计所得SOC与真实SOC,发现整数一阶模型估计SOC的误差约为8%,整数二阶模型的误差约为7%,而分数一阶模型的误差仅约为1%。 展开更多
关键词 等效电路模型 整数阶模型 分数阶模型 荷电状态(SOC) 基于遗忘因子的递推最小二乘(FFRLS)法
下载PDF
水平张量重力梯度仪垂向运动误差实时补偿方法
13
作者 李达 赵明 +3 位作者 范士锋 李中 李城锁 赵琳 《中国惯性技术学报》 EI CSCD 北大核心 2024年第2期125-131,共7页
为减小垂向运动对水平张量重力梯度测量的影响,提出了一种水平张量重力梯度仪垂向运动误差实时补偿方法。首先,分析了载体垂向运动引起重力梯度动态测量误差的机理,建立了综合安装误差角的回归方程;其次,在递推公式中引入遗忘因子,提高... 为减小垂向运动对水平张量重力梯度测量的影响,提出了一种水平张量重力梯度仪垂向运动误差实时补偿方法。首先,分析了载体垂向运动引起重力梯度动态测量误差的机理,建立了综合安装误差角的回归方程;其次,在递推公式中引入遗忘因子,提高状态估计的跟踪速度;再次,针对量测量易受载体运动干扰的问题,通过Sage-Husa自适应滤波的方法实时适应不同量级的动态干扰,对综合安装误差角进行实时估计;最后,利用得到的综合安装误差角估计结果,实现重力梯度垂向运动测量误差的实时补偿。船载实验数据处理结果表明,与传统补偿方法相比,所提方法可将重力梯度内符合精度由30E@1km提高至15E@1km。 展开更多
关键词 重力梯度仪 误差补偿 递推最小二乘 遗忘因子
下载PDF
基于IMAFFRLS-EKF的锂电池在线参数辨识和SOC估计方法
14
作者 董磊 赖纪东 +3 位作者 苏建徽 谢其龙 王祥 周晨光 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期66-74,共9页
针对基于扩展卡尔曼滤波(EKF)法锂离子电池SOC估计,易受最小二乘法及其改进方法的模型参数在线辨识精度影响,提出一种改进遗忘因子的最小二乘在线参数辨识方法(IMAFFRLS)。以双极化等效电路模型为基础,分析传统的基于遗忘因子的最小二乘... 针对基于扩展卡尔曼滤波(EKF)法锂离子电池SOC估计,易受最小二乘法及其改进方法的模型参数在线辨识精度影响,提出一种改进遗忘因子的最小二乘在线参数辨识方法(IMAFFRLS)。以双极化等效电路模型为基础,分析传统的基于遗忘因子的最小二乘法(FFRLS)辨识模型参数时产生误差的原因,指出单一遗忘因子难以准确跟踪多个以不同速率变化的模型参数。通过对FFRLS算法中的协方差和增益矩阵解耦,引入多个可变遗忘因子独立修正不同参数的估计误差;并以移动区间内的输入电流波动程度和输出电压观测误差为依据,实现各遗忘因子的自适应变化。此外,将改进前后的两种参数辨识算法分别与EKF算法联合,实现锂离子电池SOC估计。最后基于Matlab进行对比仿真验证,结果表明,相对于FFRLS-EKF算法,所提出的IMAFFRLS-EKF算法辨识模型参数以及估计SOC的精度更高。 展开更多
关键词 锂电池 参数辨识 状态估计 扩展卡尔曼滤波 遗忘因子 最小二乘法
下载PDF
基于FFRLS和ASR-UKF滤波算法的锂电池SOC估计
15
作者 邓丹 刘胜永 +2 位作者 王顺利 刘鹏辉 胡聪 《电源技术》 CAS 北大核心 2024年第2期299-305,共7页
锂电池在工作过程中,其内部参数易受多种因素影响,为提高锂电池在复杂环境下荷电状态(SOC)估计精度,以二阶戴维宁(Thevenin)等效模型为基础,结合遗忘因子递推最小二乘法(FFRLS)对模型参数进行在线辨识。针对传统卡尔曼滤波算法高度非线... 锂电池在工作过程中,其内部参数易受多种因素影响,为提高锂电池在复杂环境下荷电状态(SOC)估计精度,以二阶戴维宁(Thevenin)等效模型为基础,结合遗忘因子递推最小二乘法(FFRLS)对模型参数进行在线辨识。针对传统卡尔曼滤波算法高度非线性及系统噪声不确定性等缺点,提出了一种自适应平方根无迹卡尔曼滤波(ASR-UKF)算法,该算法利用平方根算法处理均值和协方差,确保了状态协方差的半正定性和稳定性,并引入自适应滤波算法对噪声进行实时修正,消除了系统时变噪声影响。结果表明,FFRLS能有效解决数据饱和及算法矩阵计算量大的问题,等效模型精度高达98%。在混合动力脉冲特性(HPPC)测试和北京公交动态测试工况(BBDST)下,ASR-UKF算法SOC估计最大误差分别为3.264%和0.572%,具备更好的跟踪效果,验证了改进算法良好的收敛性与自适应性。 展开更多
关键词 荷电状态 二阶Thevenin模型 遗忘因子递推最小二乘法 自适应平方根无迹卡尔曼滤波算法
下载PDF
基于动态遗忘因子递推最小二乘法和改进粒子滤波算法的锂电池SOC估计
16
作者 卢昊 李广军 张兰春 《车用发动机》 北大核心 2024年第3期66-73,共8页
为了提高锂电池荷电状态(SOC)估计的精度,提出了一种基于动态遗忘因子递推最小二乘法和改进粒子滤波算法相结合的锂电池SOC估计方法。针对固定遗忘因子递推最小二乘法在电池参数辨识中难以同时保持快速收敛和稳定性的问题,引入动态遗传... 为了提高锂电池荷电状态(SOC)估计的精度,提出了一种基于动态遗忘因子递推最小二乘法和改进粒子滤波算法相结合的锂电池SOC估计方法。针对固定遗忘因子递推最小二乘法在电池参数辨识中难以同时保持快速收敛和稳定性的问题,引入动态遗传因子,以模型辨识值和实际值的残差为变量构建修正公式,实现遗忘因子动态调整。为了改善粒子滤波(PF)的粒子多样性丧失问题,采用白鹭群优化算法(ESOA)对粒子滤波算法进行优化。仿真结果表明,基于动态遗忘因子递推最小二乘法和改进粒子滤波算法的锂电池SOC估计误差始终保持在0.3%以内,平均绝对误差和标准差为0.15%和0.17%,与其他算法相比具有更好的精度和稳定性。 展开更多
关键词 锂电池 电池荷电状态(SOC) 动态遗忘因子 递推最小二乘法 白鹭群优化算法 粒子滤波
下载PDF
基于OGCE⁃BEM的OTFS信道估计
17
作者 李心怡 解志斌 +1 位作者 张金波 毛云龙 《光通信研究》 北大核心 2024年第3期147-152,共6页
【目的】随着面向第六代移动通信技术研究工作的开展,传统的正交频分复用(OFDM)系统中的载波间干扰使得信道估计性能不足以提供高度可靠的通信,而正交时频空(OTFS)系统可以有效解决快速时变性和多普勒效应导致的通信系统可靠性下降问题... 【目的】随着面向第六代移动通信技术研究工作的开展,传统的正交频分复用(OFDM)系统中的载波间干扰使得信道估计性能不足以提供高度可靠的通信,而正交时频空(OTFS)系统可以有效解决快速时变性和多普勒效应导致的通信系统可靠性下降问题,近年来受到了广泛关注。【方法】为了有效满足OTFS系统所需的信道估计性能需求,文章采用优化的广义复指数(OGCE)基扩展模型(BEM)将信道脉冲响应建模为时不变的基函数与基函数系数的形式,从而有效地拟合高速移动通信场景下的快速时变信道。OGCE⁃BEM通过更加密集的采样改善了频谱泄漏的问题,并且通过增加修正系数降低了高频基模型的误差。为了得到更为精确的基函数系数,文章基于遗忘因子与估计误差的关系,设计了可变遗忘因子的递归最小二乘(RLS)滤波器,使得RLS滤波器可以实时追踪基函数系数的变化。【结果】仿真结果表明,文章所提算法适用于高速移动通信场景,基函数的设计更为合理,相较于固定遗忘因子的估计方法,具有更低的均方误差,信道估计结果更加精确。与最小二乘(LS)、BEM⁃LS和BEM⁃线性最小均方差(LMMSE)信道估计方式相比,均方误差性能得到了明显提升。【结论】文章所提基于OGCE⁃BEM的信道估计算法有效减少了待估计未知参数量,提高了信道估计的准确性。 展开更多
关键词 正交时频空 优化的广义复指数基扩展模型 遗忘因子 信道估计
下载PDF
一种基于折息最小二乘法的PMSM磁链辨识方法
18
作者 谢明睿 赖纪东 +2 位作者 苏建徽 周晨光 郑伟炜 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第8期1049-1055,1061,共8页
永磁同步电机(permanent magnet synchronous motor,PMSM)的磁链准确辨识是实现高性能电机控制的基础。针对传统递推最小二乘(recursive least squares,RLS)法受噪声影响小但存在数据饱和,影响辨识精度和动态性问题,以及遗忘最小二乘(re... 永磁同步电机(permanent magnet synchronous motor,PMSM)的磁链准确辨识是实现高性能电机控制的基础。针对传统递推最小二乘(recursive least squares,RLS)法受噪声影响小但存在数据饱和,影响辨识精度和动态性问题,以及遗忘最小二乘(recursive least squares with forgetting factor,FRLS)法避免数据饱和但存在参数估计误差与动态跟踪性能矛盾的问题,文章提出一种基于折息最小二乘(recursive least squares with discount factor,DRLS)法的磁链辨识方法。该算法在FRLS法中引入加权因子构成折息因子,采用递推方法进行磁链辨识,减小参数估计误差,提高磁链辨识精度及动态跟踪能力。通过MATLAB仿真及半实物仿真试验,验证所提磁链识别方法的有效性。 展开更多
关键词 永磁同步电机(PMSM) 磁链辨识 递推最小二乘(RLS)法 遗忘最小二乘(FRLS)法 折息最小二乘(DRLS)法
下载PDF
基于DFFRLS的PMSM自校正PI速度控制策略研究
19
作者 邹敬业 赵世伟 陈志峰 《微电机》 2024年第2期25-30,共6页
基于惯量辨识的永磁同步电机自校正PI速度控制具有良好的抗负载扰动性能,但受到惯量辨识过程存在抖动的影响转速响应会产生高频振荡。为抑制高频振荡,提出一种基于动态遗忘因子递推最小二乘法惯量辨识的自校正PI控制策略。首先,构造指... 基于惯量辨识的永磁同步电机自校正PI速度控制具有良好的抗负载扰动性能,但受到惯量辨识过程存在抖动的影响转速响应会产生高频振荡。为抑制高频振荡,提出一种基于动态遗忘因子递推最小二乘法惯量辨识的自校正PI控制策略。首先,构造指数函数形式的动态遗忘因子,分析其跟随辨识误差变化的规律并用于转动惯量辨识。然后,采用“振荡指标法”设计PI参数整定公式,并结合DFFRLS惯量辨识过程进行自校正PI控制。仿真和实验结果表明:改进的DFFRLS有效减小了辨识惯量的抖动幅度;所提ST-PIC调速控制策略在保证转速高性能响应的同时有效抑制了高频振荡。 展开更多
关键词 永磁同步电机 自校正PI控制 惯量辨识 递推最小二乘法 动态遗忘因子
下载PDF
Autonomous navigation method of satellite constellation based on adaptive forgetting factors
20
作者 Dong WANG Jing YANG Kai XIONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期317-332,共16页
To address the problem that model uncertainty and unknown time-varying system noise hinder the filtering accuracy of the autonomous navigation system of satellite constellation,an autonomous navigation method of satel... To address the problem that model uncertainty and unknown time-varying system noise hinder the filtering accuracy of the autonomous navigation system of satellite constellation,an autonomous navigation method of satellite constellation based on the Unscented Kalman Filter with Adaptive Forgetting Factors(UKF-AFF)is proposed.The process noise covariance matrix is estimated online with the strategy that combines covariance matching and adaptive adjustment of forgetting factors.The adaptive adjustment coefficient based on squared Mahalanobis distance of state residual is employed to achieve online regulation of forgetting factors,equipping this method with more adaptability.The intersatellite direction vector obtained from photographic observations is introduced to determine the constellation satellite orbit together with the distance measurement to avoid rank deficiency issues.Considering that the number of available measurements varies online with intersatellite visibility in practical applications such as time-varying constellation configurations,the smooth covariance matrix of state correction determined by innovation and gain is adopted and constructed recursively.Stability analysis of the proposed method is also conducted.The effectiveness of the proposed method is verified by the Monte Carlo simulation and comparison experiments.The estimation accuracy of constellation position and velocity of UKF-AFF is improved by 30%and 44%respectively compared to those of the extended Kalman filter,and the method proposed is also better than other several adaptive filtering methods in the presence of significant model uncertainty. 展开更多
关键词 Constellation autonomous navigation Unscented Kalman filter Adaptive forgetting factor Model uncertainty Stability analysis
原文传递
上一页 1 2 26 下一页 到第
使用帮助 返回顶部