Boolean satisfiability (SAT) is widely used as a solver engine in electronic design automation (EDA). Typically, SAT is used to determine whether one or more groups of variables can be combined to form a true formula....Boolean satisfiability (SAT) is widely used as a solver engine in electronic design automation (EDA). Typically, SAT is used to determine whether one or more groups of variables can be combined to form a true formula. All solutions SAT (AllSAT) is a variant of the SAT problem. In the fields of formal verification and pattern generation, AllSAT is particularly useful because it efficiently enumerates all possible solutions. In this paper, a semi-tensor product (STP) based AllSAT solver is proposed. The solver can solve instances described in both the conjunctive normal form (CNF) and circuit form. The implementation of our method differs from incremental enumeration because we do not add blocking conditions for existing solutions, but rather compute the matrices to obtain all the solutions in one pass. Additionally, the logical matrices support a variety of logic operations. Results from experiments with MCNC benchmarks using CNF-based and circuit-based forms show that our method can accelerate CPU time by 8.1x (238x maximum) and 19.9x (72x maximum), respectively.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.61871242in part by the State Key Laboratory of ASIC(Application Specific Integrated Circuit)&System of China under Grant No.2021KF008.
文摘Boolean satisfiability (SAT) is widely used as a solver engine in electronic design automation (EDA). Typically, SAT is used to determine whether one or more groups of variables can be combined to form a true formula. All solutions SAT (AllSAT) is a variant of the SAT problem. In the fields of formal verification and pattern generation, AllSAT is particularly useful because it efficiently enumerates all possible solutions. In this paper, a semi-tensor product (STP) based AllSAT solver is proposed. The solver can solve instances described in both the conjunctive normal form (CNF) and circuit form. The implementation of our method differs from incremental enumeration because we do not add blocking conditions for existing solutions, but rather compute the matrices to obtain all the solutions in one pass. Additionally, the logical matrices support a variety of logic operations. Results from experiments with MCNC benchmarks using CNF-based and circuit-based forms show that our method can accelerate CPU time by 8.1x (238x maximum) and 19.9x (72x maximum), respectively.