In order to design the press bend forming path of aircraft integral panels,a novel optimization method was proposed, which integrates FEM equivalent model based on previous study,the artificial neural network response...In order to design the press bend forming path of aircraft integral panels,a novel optimization method was proposed, which integrates FEM equivalent model based on previous study,the artificial neural network response surface,and the genetic algorithm.First,a multi-step press bend forming FEM equivalent model was established,with which the FEM experiments designed with Taguchi method were performed.Then,the BP neural network response surface was developed with the sample data from the FEM experiments.Furthermore,genetic algorithm was applied with the neural network response surface as the objective function. Finally,verification was carried out on a simple curvature grid-type stiffened panel.The forming error of the panel formed with the optimal path is only 0.098 39 and the calculating efficiency has been improved by 77%.Therefore,this novel optimization method is quite efficient and indispensable for the press bend forming path designing.展开更多
An original plastic equivalent model was proposed to solve the problem of excessive FEM simulation time when designing the press bend forming path and optimizing the process parameters of press bend forming of the int...An original plastic equivalent model was proposed to solve the problem of excessive FEM simulation time when designing the press bend forming path and optimizing the process parameters of press bend forming of the integrally stiffened aircraft panels. Based on the in-depth analysis of the mechanics of the bending and springback of the detailed model and the equivalent model of the integral panels,the plastic equivalent model of the virtual material with special initial yield stress and hardening coefficients was constructed. FEM results indicate that the objective of getting the similar contour with the same press bend forming path is achieved with the error less than 6%,and the efficiency of FEM simulation is improved by more than 80%. The plastic equivalent model is valuable and essential for the further research on the press bend forming process of large scale complicated integral panels.展开更多
A comparison research about the implicit and explicit solutions of sheet forming simulation was presented. On the platform of Autoform and Ls dyna3D, a dynamic forming simulation of a sideframe, of Santana 2000 was do...A comparison research about the implicit and explicit solutions of sheet forming simulation was presented. On the platform of Autoform and Ls dyna3D, a dynamic forming simulation of a sideframe, of Santana 2000 was done, and the engineering strain, the thickness distribution and the FLD between the two softwares were compared. It indicates that their results coincide with each other very much and the areas of the wrinkle and failure are the same roughly. Further, the characteristics of the two softwares in geometric model and preprocessing of the finite element were discussed and the questions which need attention provided.展开更多
The forming of sheet metal in a desired and attractive shape is a process that requires an understanding of materials, mechanics and manufacturing principles. Manufacturing a consistent sheet metal component is challe...The forming of sheet metal in a desired and attractive shape is a process that requires an understanding of materials, mechanics and manufacturing principles. Manufacturing a consistent sheet metal component is challenging due to the nonlinear interactions of various material and process parameters. One of the major issues in the manufacturing of inconsistent?sheet metal?parts is springback. Springback is the elastic strain recovery in the material after the tooling is removed and the final shape of the product depends on the springback amount formed. In this study according to the result of simulation the inverted compensation method is adopted to optimize die surface design. Similarly, to predict and compensate the springback error this study presented an analytical approach of forming process in a stepwise modification of the automobile roof panel. Moreover, based on?Dynaform?and?finite element analysis of sheet metal stamping simulation the sprinback in automobile roof panel is predicted and compensated.?In addition, this study examines the significant requirements of the sheet metal forming precision of automobile body and the simulation of forming, stamping and springback of automobile roof panel is carried out, and the result of simulation also is analyzed.展开更多
基金Project(20091102110021)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘In order to design the press bend forming path of aircraft integral panels,a novel optimization method was proposed, which integrates FEM equivalent model based on previous study,the artificial neural network response surface,and the genetic algorithm.First,a multi-step press bend forming FEM equivalent model was established,with which the FEM experiments designed with Taguchi method were performed.Then,the BP neural network response surface was developed with the sample data from the FEM experiments.Furthermore,genetic algorithm was applied with the neural network response surface as the objective function. Finally,verification was carried out on a simple curvature grid-type stiffened panel.The forming error of the panel formed with the optimal path is only 0.098 39 and the calculating efficiency has been improved by 77%.Therefore,this novel optimization method is quite efficient and indispensable for the press bend forming path designing.
基金Project(50675010) supported by the National Natural Science Foundation of China
文摘An original plastic equivalent model was proposed to solve the problem of excessive FEM simulation time when designing the press bend forming path and optimizing the process parameters of press bend forming of the integrally stiffened aircraft panels. Based on the in-depth analysis of the mechanics of the bending and springback of the detailed model and the equivalent model of the integral panels,the plastic equivalent model of the virtual material with special initial yield stress and hardening coefficients was constructed. FEM results indicate that the objective of getting the similar contour with the same press bend forming path is achieved with the error less than 6%,and the efficiency of FEM simulation is improved by more than 80%. The plastic equivalent model is valuable and essential for the further research on the press bend forming process of large scale complicated integral panels.
文摘A comparison research about the implicit and explicit solutions of sheet forming simulation was presented. On the platform of Autoform and Ls dyna3D, a dynamic forming simulation of a sideframe, of Santana 2000 was done, and the engineering strain, the thickness distribution and the FLD between the two softwares were compared. It indicates that their results coincide with each other very much and the areas of the wrinkle and failure are the same roughly. Further, the characteristics of the two softwares in geometric model and preprocessing of the finite element were discussed and the questions which need attention provided.
文摘The forming of sheet metal in a desired and attractive shape is a process that requires an understanding of materials, mechanics and manufacturing principles. Manufacturing a consistent sheet metal component is challenging due to the nonlinear interactions of various material and process parameters. One of the major issues in the manufacturing of inconsistent?sheet metal?parts is springback. Springback is the elastic strain recovery in the material after the tooling is removed and the final shape of the product depends on the springback amount formed. In this study according to the result of simulation the inverted compensation method is adopted to optimize die surface design. Similarly, to predict and compensate the springback error this study presented an analytical approach of forming process in a stepwise modification of the automobile roof panel. Moreover, based on?Dynaform?and?finite element analysis of sheet metal stamping simulation the sprinback in automobile roof panel is predicted and compensated.?In addition, this study examines the significant requirements of the sheet metal forming precision of automobile body and the simulation of forming, stamping and springback of automobile roof panel is carried out, and the result of simulation also is analyzed.