For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ...For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection.展开更多
Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient ...Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient buried hill Ordovician reservoirs in the Tarim Basin. Geological structure, lithology, porosity, permeability and mineral components all affect the potential for formation damage. The experimental results showed that the permeability loss was 83.8%-98.6% caused by stress sensitivity, and was 27.9%-48.1% caused by water blocking. Based on the experimental results, several main conclusions concerning stress sensitivity can be drawn as follows: the lower the core permeability and the smaller the core fracture width, the higher the stress sensitivity. Also, stress sensitivity results in lag effect for both permeability recovery and fracture closure. Aimed at the mechanisms of formation damage, a modified low-damage mixed metal hydroxide (MMH) drilling fluid system was developed, which was mainly composed of low-fluorescence shale control agent, filtration control agent, lowfluorescence lubricant and surfactant. The results of experimental evaluation and field test showed that the newly-developed drilling fluid and engineering techniques provided could dramatically increase the return permeability (over 85%) of core samples. This drilling fluid had such advantages as good rheological and lubricating properties, high temperature stability, and low filtration rate (API filtration less than 5 ml after aging at 120 ℃ for 4 hours). Therefore, fractured carbonate formations with low permeability could be protected effectively when drilling with the newly-developed drilling fluid. Meanwhile, field test showed that both penetration rate and bore stability were improved and the soaking time of the drilling fluid with formation was sharply shortened, indicating that the modified MMH drilling fluid could meet the requirements of drilling engineering and geology.展开更多
Natural carbonate core samples with artificial fractures are often used to evaluate the damage of fractured carbonate formations in the laboratory. It is shown that the most frequent error for evaluation results direc...Natural carbonate core samples with artificial fractures are often used to evaluate the damage of fractured carbonate formations in the laboratory. It is shown that the most frequent error for evaluation results directly from the random width characterized by the artificial fractures. To solve this problem, a series of simulated fractured core samples made of stainless steel with a given width of fracture were prepared. The relative error for the width of artificial fracture decreased to 1%. The width of natural and artificial fractures in carbonate reservoirs can be estimated by image log data. A series of tests for formation damage were conducted by using the stainless steel simulated core samples flushed with different drilling fluids, such as the sulfonate/polymer drill-in fluid and the solids-flee drill-in fluid with or without ideal packing bridging materials. Based on the experimental results using this kind of simulated cores, a novel approach to the damage control of fractured carbonate reservoirs was presented. The effective temporary plugging ring on the end face of the simulated core sample can be observed clearly. The experimental results also show that the stainless steel simulated cores made it possible to visualize the solids and filtrate invasion.展开更多
The properties of oil and gas formation could be significantly damaged during drilling and completion operations as a result of mud invasion,fluid incompatibility and interaction with rock minerals.This paper presents...The properties of oil and gas formation could be significantly damaged during drilling and completion operations as a result of mud invasion,fluid incompatibility and interaction with rock minerals.This paper presents a systematic method for evaluating formation damage during filter cake deposition(primary damage)and removal process(secondary damage).The role of primary damage in the evolution of secondary damage was also investigated.The interaction of the filter cake solvent(chelating agent solution)with the rock samples was implemented through core flooding experiment.Nuclear Magnetic Resonance(NMR)was used to evaluate the properties of the rock sample,pre and post filter cake deposition and removal processes.The results show that secondary damaged is a strong function of the location and the intensity of the primary damage.The rock type and its pore structure also play important roles in both primary and secondary damage.The extent of secondary damage depends on the amount of barium sulphate deposited during primary damage.The chelating agent used to dissolve the barites in sandstones,deposited the barite in the small pores while it enlarges the bigger pores.In contrast,the chelating agent in the carbonate samples had multiple barite deposition points.展开更多
Kinds of complex-structure wells can effectively improve production,which are widely used.However,in the process of drilling and completion,complex-structure wells with long drilling cycle and large exposed area of re...Kinds of complex-structure wells can effectively improve production,which are widely used.However,in the process of drilling and completion,complex-structure wells with long drilling cycle and large exposed area of reservoir can lead to the fact that reservoir near wellbore is more vulnerable to the working fluid invasion,resulting in more serious formation damage.In order to quantitatively describe the reservoir formation damage in the construction of complex-structure well,taking the inclined well section as the research object,the coordinate transformation method and conformal transformation method are given according to the flow characteristics of reservoir near wellbore in anisotropic reservoir.Then the local skin factor in orthogonal plane of wellbore is deduced.Considering the un-even distribution of local skin factor along the wellbore,the oscillation decreasing model and empirical equation model of damage zone radius distribution along the wellbore direction are established and then the total skin factor model of the whole well is superimposed to realize the reservoir damage evaluation of complex-structure wells.Combining the skin factor model with the production model,the production of complex-structure wells can be predicted more accurately.The two field application cases show that the accuracy of the model can be more than 90%,which can also fully reflect the invasion characteristics of drilling and completion fluid in any well section of complex-structure wells in anisotropic reservoir,so as to further provide guidance for the scientific establish-ment of reservoir production system.展开更多
Reduction in water injectivity would be harmful to the waterflood development of offshore sandstone oil reservoirs. In this paper the magnitude of formation damage during water injection was evaluated by analyzing the...Reduction in water injectivity would be harmful to the waterflood development of offshore sandstone oil reservoirs. In this paper the magnitude of formation damage during water injection was evaluated by analyzing the performance of water injection in the Bohai offshore oilfield, China. Two parameters, permeability reduction and rate of wellhead pressure rise, were proposed to evaluate the formation damage around injection wells. The pressure performance curve could be divided into three stages with different characteristics. Analysis of field data shows that formation damage caused by water injection was severe in some wells in the Bohai offshore oilfield, China. In the laboratory, the content of clay minerals in reservoir rock was analyzed and sensitivity tests (including sensitivity to water, ftow rate, alkali, salt and acid) were also conducted. Experimental results show that the reservoir had a strong to medium sensitivity to water (i.e. clay swelling) and a strong to medium sensitivity to flow rate, which may cause formation damage. For formation damage prevention, three injection schemes of clay stabilizer (CS) were studied, i.e. continuous injection of low concentration CS (CI), slug injection of high concentration CS (SI), and slug injection of high concentration CS followed by continuous injection of low concentration CS (SI-CI). Core flooding experiments show that SI-CI is an effective scheme to prevent formation damage and is recommended for the sandstone oil reservoirs in the Bohai offshore oilfield during water injection.展开更多
The concern on formation damage control of high permeability sandstone reservoir has been growing in oil industry in recent years. The invasion of particles and the filtrate of drilling fluid are proven as one of the ...The concern on formation damage control of high permeability sandstone reservoir has been growing in oil industry in recent years. The invasion of particles and the filtrate of drilling fluid are proven as one of the key factors accounting for reservoir damage. Based on the ideal packing theory, the practical software has been developed to optimize the blending proportion of several bridging agents, and the core flooding tests were conducted to evaluate return permeability of core samples contaminated with different drilling fluids. Experimental results show that the ideal packing approach can reduce the dynamic filtration rate, improve the return permeability and drawdown the breakthrough pressure, indicating that this kind of drilling fluids can meet the demands of formation damage control for high permeability sandstone reservoirs. Some applying procedures for formation damage control are also proposed in this paper.展开更多
Colloidal gas aphrons (CGAs) were first reported by Sebba (1971) as micro bubbles (25-125 μm), composed of a gas nucleus surrounded by a thin surfactant film and created by intense stirring of a surfactant solution. ...Colloidal gas aphrons (CGAs) were first reported by Sebba (1971) as micro bubbles (25-125 μm), composed of a gas nucleus surrounded by a thin surfactant film and created by intense stirring of a surfactant solution. Since then, these colloidal dispersions have been used for diverse applications, with a particular focus on separation processes. However, exploitation of CGAs in petroleum industry is only at the outset. CGAs were first used in west Texas in 1998, under the name Aphron drilling fluids. This kind of fluid is characterized as having a continuous phase, a high viscosity at a low shear rate and containing, as an internal phase, micro air or gas bubbles, non-coalescing and recirculating. In this paper, we illuminate the physical and chemical properties of aphron drilling fluid and its processing mechanism.展开更多
Fuzzy-ball working fluids(FBWFs)have been successfully applied in different development phases of tight reservoirs.Field reports revealed that FBWFs satisfactorily met all the operational and reservoir damage control ...Fuzzy-ball working fluids(FBWFs)have been successfully applied in different development phases of tight reservoirs.Field reports revealed that FBWFs satisfactorily met all the operational and reservoir damage control requirements during their application.However,the damage-control mechanisms and degree of formation damage caused by fuzzy-ball fluids have not been investigated in lab-scale studies so far.In this study,the degree of fuzzy-ball-induced damage in single-and double-layer reservoirs was evaluated through core flooding experiments that were based on permeability and flow rate indexes.Additionally,its damage mechanisms were observed via scanning electron microscope and energy-dispersive spectroscopy tests.The results show that:(1)For single-layer reservoirs,the FBWF induced weak damage on coals and medium-to-weak damage on sandstones,and the difference of the damage in permeability or flow rate index on coals and sandstones is below 1%.Moreover,the minimum permeability recovery rate was above 66%.(2)For double-layer commingled reservoirs,the flow rate index revealed weak damage and the overall damage in double-layer was lower than the single-layer reservoirs.(3)There is no significant alteration in the microscopic structure of fuzzy-ball saturated cores with no evidence of fines migration.The dissolution of lead and sulfur occurred in coal samples,while tellurium in sandstone,aluminum,and magnesium in carbonate.However,the precipitation of aluminum,magnesium,and sodium occurred in sandstone but no precipitates found in coal and carbonate.The temporal plugging and dispersion characteristics of the FBWFs enable the generation of reservoir protection layers that will minimize formation damage due to solid and fluid invasion.展开更多
A coupled CFD-DEM method is used to simulate the formation process of fracture plugging zone.A photo-elastic system characterizing mesoscale force chain network developed by our own is used to model the pressure evolu...A coupled CFD-DEM method is used to simulate the formation process of fracture plugging zone.A photo-elastic system characterizing mesoscale force chain network developed by our own is used to model the pressure evolution in fracture plugging zone to reveal the evolution mechanism of the structure of fracture plugging zone.A theoretical basis is provided for improving the lost circulation control effect in fractured reservoirs and novel methods are proposed for selecting loss control materials and designing loss control formula.CFD-DEM simulation results show that bridging probability is the key factor determining the formation of fracture plugging zone and fracture plugging efficiency.Critical and absolute bridging concentrations are proposed as the key indexes for loss control formula design.With the increase of absolute bridging concentration,the governing factor of bridging is changed from material grain size to the combination of material grain size and friction force.Results of photo-elastic experiments show that mesoscale force chain network is the intrinsic factor affecting the evolution of pressure exerting on the fracture plugging zone and determines the macroscopic strength of fracture plugging zone.Performance parameters of loss control material affect the force chain network structure and the ratio of stronger force chain,and further impact the stability and strength of fracture plugging zone.Based on the study results,the loss control formula is optimized and new-type loss control material is designed.Laboratory experiments results show that the fracture plugging efficiency and strength is effectively improved.展开更多
Analysis of reservoir sensitivity to velocity,water,salt,acid,alkali and stress is critical for reservoir protection.To study the tight sandstone reservoir sensitivity at different formation depths(effective stress)an...Analysis of reservoir sensitivity to velocity,water,salt,acid,alkali and stress is critical for reservoir protection.To study the tight sandstone reservoir sensitivity at different formation depths(effective stress)and formation water conditions(pH,salinity,and fluid velocity),a series of dynamic core flow tests under different pH,salinity,acid,and effective stress conditions were performed on samples from tight sandstone reservoirs of the Upper Triassic Yanchang 8(T_(3)y^(8))Member and conventional reservoirs of the Middle-Lower Jurassic Yan'an 9(J_(1-2)y^(9))Member in the Ordos Basin.The results indicate that,compared with the conventional reservoirs,the tight sandstone reservoirs are more sensitive to velocity and stress,less sensitive to water,alkali and salinity,and respond better to acid fracturing.In addition,the critical conditions(salinity,velocity,pH,and stress)for pumping drilling,completion,and fracturing fluids into tight sandstone reservoirs were investigated.A combination of scanning electron microscopy coupled with energy-dispersive spectrometry(SEM-EDS),cathodoluminescence(CL),casting thin section(CTS)and nuclear magnetic resonance(NMR)images,high-pressure mercury injection capillary pressure(MICP)measurements as well as X-ray fluorescence spectral(XRF)analyses were employed to analyze the damage mechanisms of the conventional reservoirs(J_(1-2)y^(9))and tight sandstone reservoirs(T_(3)y^(8))caused by fluid invasion.The results suggest that reservoir sensitivity is primarily conditioned by the composition of detrital components and interstitial fillings,petrophysical properties,pore-throat structure,and diagenetic facies.All these factors control the sensitivity types and extent of the reser-voirs.Our results indicate that the poorer the reservoir physical properties,the stronger the reservoir heterogeneity and sensitivity,implying that tight sandstone reservoirs are more susceptible to changes in fluids than conventional reservoirs.This study offers insights into the reservoir damage types and helps to improve the design and implementation of protection measures for tight sandstone reservoir exploration.展开更多
Fracturing operations can effectively improve the production of low-permeable reservoirs. The performance of fracturing fluids directly affects the fracturing efficiency and back flow capacity. As polymerbased fractur...Fracturing operations can effectively improve the production of low-permeable reservoirs. The performance of fracturing fluids directly affects the fracturing efficiency and back flow capacity. As polymerbased fracturing fluids(such as guar gum(GG), polyacrylamide(HPAM), etc.) are high-viscosity fluids formed by viscosifiers and crosslinking agents, the degree of gel breakage after the fracturing operation directly influences the damage degree to the reservoir matrix and the mobility of oil angd gas produced from the reservoir into the wellbore. This study compared the viscosity, molecular weight, and particle size of the fracturing fluid after gel breakage prepared by GG and HPAM as viscosifiers, as well as evaluate their damage to the core. Results show that the viscosities of the gel-breaking fluid increased with the concentration of the viscosifier for both the HPAM-based and GG-based fracturing fluids. For the breaking fluid with the same viscosity, the molecular weight in the HPAM-based gel-breaking fluid was much larger than that in the GG-based system. Moreover, for the gel-breaking fluid with the same viscosity, the molecular particle size of the residual polymers in the HPAM-based system was smaller than that in the GG-based system. The damage to the core with the permeability of 1 × 10^(-3)μm^(2) caused by both the HPAM-based and GG-based gel-breaking fluids decreased with the increase in the solution viscosity. For the gel-breaking fluid systems with the same viscosity(i.e., 2-4 mPa s), the damage of HPAM-based fracturing fluid to low-permeability cores was greater than the GG-based fracturing fluid(45.6%-80.2%) since it had a smaller molecular particle size, ranging from 66.2% to 77.0%. This paper proposed that the damage caused by hydraulic fracturing in rock cores was related to the partilce size of residual polymers in gel-breaking solution, rather than its molecular weight. It was helpful for screening and optimizing viscosifiers used in hydraulic fracturing process.展开更多
Sulfur deposition in the formation, induced by a reduction in the solubility of the sulfur in the gas phase, may significantly reduce the inflow performance of sour gas wells and some wells in sour gas reservoirs have...Sulfur deposition in the formation, induced by a reduction in the solubility of the sulfur in the gas phase, may significantly reduce the inflow performance of sour gas wells and some wells in sour gas reservoirs have even become completely plugged with deposited sulfur within several months. Accurate prediction and effective management of sulfur deposition are crucial to the economic viability of sour gas reservoirs. In this paper, a dynamic flow experiment was carried out to investigate formation damage resulting from sulfur deposition using an improved experimental method. The core sample was extracted from the producing interval of the LG2 well, LG gas field in the Sichuan Basin. The experimental temperature was 26 °C and the initial pressure was 19 MPa. The displacement pressure continuously decreased from 19 to 10 MPa, and the depletion process lasted 15 days. Then the core was removed and dried. The core mass and core permeability were measured before and after experiments. Experimental results indicated that the core mass increased from 48.372 g before experiment to 48.386 g afterwards, while the core permeability reduced from 0.726 to 0.608 md during the experiment. Then the core was analyzed with a scanning electron microscope (SEM) and energy-dispersive X-ray mapping. The deposition pattern and micro-distribution of elemental sulfur was observed and the deposited elemental sulfur distributed as a film around the pore surface.展开更多
Loss of drilling fluids in large porous and fractured zones inevitably up-regulates the overall cost of drilling.As a type of acid-soluble cement,magnesium oxysulfate(MOS)cement is arousing huge attention for the less...Loss of drilling fluids in large porous and fractured zones inevitably up-regulates the overall cost of drilling.As a type of acid-soluble cement,magnesium oxysulfate(MOS)cement is arousing huge attention for the less hygroscopic nature and less damaging to steel casings compared with magnesium oxychloride(MOC)cement.The present study developed MOS cement as a fast setting,high strength and acid-soluble lost circulation material to reduce the problem of losses.As suggested in this study,a higher strength of MOS cement at 70℃could be achieved by elevating M_(g)O/MgSO_(4)·7 H_(2)O molar ratio or downregulating H_(2)O/MgSO_(4)·7 H_(2)O molar ratio.Boric acid and borax could act as effective retarders.Plugging slurry based on MOS cement could effectively block the simulated porous loss zones exhibiting a diameter from 1.24 mm to 1.55 mm,as well as the fractured loss zones with a width from 2 mm to 5 mm and bearing a pressure difference up to 8 MPa.Permeability recovery test demonstrated that it facilitated future oil and gas production.The successful field application in the Junggar Basin,Xinjiang,China verified the significant plugging effect of MOS cement for severe loss problems.展开更多
We report a phase inversion polymer coating as a novel concept with potential to prevent clay swelling and fines generation in coal seam gas, or other petroleum, wellbores. Our approach uses polyethersulfone (PES) w...We report a phase inversion polymer coating as a novel concept with potential to prevent clay swelling and fines generation in coal seam gas, or other petroleum, wellbores. Our approach uses polyethersulfone (PES) with N-methyl-2- pyrrolidone (NMP) as a water-soluble solvent to form a dense, low-porosity film across the clay-rich interburden layers, but a porous and permeable membrane on coal seams. This contrasting behaviour occurs because the coal contains much more free water than the clay-rich interburden layers. We demonstrate the efficacy of the method to prevent clay spalling in immersion tests and under a flow of fresh water in a visual swell test apparatus. The clay-rich rocks studied were mudstone and siltstone, and these were dip coated in the PES/NMP solution. The uncoated mudstone swelled and broke apart quickly in the immersion test and visual flow test, but the PES coated rock samples were stable for 30 days. The coated rock and coal samples were characterised by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. The morphology of coated mudstone and coated coal samples showed that the polymer formed a dense layer across the low-permeability mudstone, but an open porous structure on the coal surface. The effect of the coating on the permeability of KCl brine through coal was measured in a core-flood apparatus. Although the permeability of the coal showed some deterioration after coating, from (0.58 ± 0.12) mD to (0.3 ±0.03) mD, these results demonstrate the potential of a smart polymer coating to prevent clay swelling while remaining permeable to gas and water on coal layers.展开更多
Selecting bridging agents properly is a critical factor in designing non-damaging or low-damaging drill-in fluids. Historically, Abrams' rule has been used for this purpose. However, Abrams' rule only addresses the ...Selecting bridging agents properly is a critical factor in designing non-damaging or low-damaging drill-in fluids. Historically, Abrams' rule has been used for this purpose. However, Abrams' rule only addresses the size of particle required to initiate a bridge. The rule does not give an optimum size nor an ideal packing sequence for minimizing fluid invasion and optimizing sealing. This paper elaborates an ideal packing approach to solving the sealing problem by sealing pores with different sizes, especially those large pores which usually make dominant contribution to permeability and thereby effectively preventing the solids and filtrate of drill-in fluids from invading into formations, compared with the conventionally used techniques. Practical software has been developed to optimize the blending proportion of several bridging agents, so as to achieve ideal packing effectiveness. The method and its use in selecting the best blending proportion of several bridging agents are also discussed in this paper. A carefully designed drill-in fluid by using the ideal packing technique (named the IPT fluid) for offshore drilling operations at the Weizhou Oilfield, Nanhai West Company, CNOOC is presented. The near 100% return permeabilities from the dynamic damage tests using reservoir cores demonstrated the excellent bridging effect provided by this drill-in fluid.展开更多
Drilling into a geopressured zone will generally cause a change in a number of basic formation/ drilling relationships. This change is usually seen as a reversal of a gradual depth related trend in a lithologically un...Drilling into a geopressured zone will generally cause a change in a number of basic formation/ drilling relationships. This change is usually seen as a reversal of a gradual depth related trend in a lithologically uniform formation. Of all the geophysical methods, the reflection seismic method is essentially the only technique used to predict pore pressures. The seismic method detects changes of interval velocity with depth from velocity analysis of the seismic data. These changes are in turn related to lithology, pore fluid type, rock fracturing and pressure changes within a stratigraphic column. When the factors affecting the velocity are understood for a given area, a successful pressure prediction can be made. For clastic environments such as the Tertiary section of the Gulf of Mexico or the Niger delta, the interval velocity of the rocks increases with depth because of compaction. In these areas, deviations from normal compaction trends are related to abnormally high pore pressures. The adapted methods provide a much easier way to handle normal compaction trend lines. In addition to well log methods, pressure detection can be obtained via drilling parameters by applying Eaton’s DXC methods. Seismic velocities have long been used to estimate pore pressure, indeed both these quantities are influenced by variations in rock properties such as porosity, density, effective stress and so on, and high pore pressure zones are often associated with low seismic velocities. Pressure prediction from seismic data is based on fundamentals of rock physics and seismic attribute analysis. This paper hence tries to assess the use of seismic waves as a viable means to calculate pore pressure, especially in areas where no prior drilling history can be found. Then we applied these methods on LAGIA-8 well, Sinai, Egypt as a case study. Pore pressure prediction from Seismic is a very essential tool to predict pore pressure before drilling operation. This could prevent the well problem as well blowout and to prevent formation damage, especially in areas where no prior drilling history can be found.展开更多
Drilling into a geopressured zone will generally cause a change in a number of basic formation/ drilling relationships. This change is usually seen as a reversal of a gradual depth related trend in a lithologically un...Drilling into a geopressured zone will generally cause a change in a number of basic formation/ drilling relationships. This change is usually seen as a reversal of a gradual depth related trend in a lithologically uniform formation. Of all the geophysical methods, the reflection seismic method is essentially the only technique used to predict pore pressures. The seismic method detects changes of interval velocity with depth from velocity analysis of the seismic data. These changes are in turn related to lithology, pore fluid type, rock fracturing and pressure changes within a stratigraphic column. When the factors affecting the velocity are understood for a given area, a successful pressure prediction can be made. For clastic environments such as the Tertiary section of the Gulf of Mexico or the Niger delta, the interval velocity of the rocks increases with depth because of compaction. In these areas, deviations from normal compaction trends are related to abnormally high pore pressures. The adapted methods provide a much easier way to handle normal compaction trend lines. In addition to well log methods, pressure detection can be obtained via drilling parameters by applying Eaton’s DXC methods. Seismic velocities have long been used to estimate pore pressure, indeed both these quantities are influenced by variations in rock properties such as porosity, density, effective stress and so on, and high pore pressure zones are often associated with low seismic velocities. Pressure prediction from seismic data is based on fundamentals of rock physics and seismic attribute analysis. This paper hence tries to assess the use of seismic waves as a viable means to calculate pore pressure, especially in areas where no prior drilling history can be found. Then we applied these methods on LAGIA-8 well, Sinai, Egypt as a case study. Pore pressure prediction from Seismic is a very essential tool to predict pore pressure before drilling operation. This could prevent the well problem as well blowout and to prevent formation damage, especially in areas where no prior drilling history can be found.展开更多
Water flooding and pressure maintenance are recommended to improve oil recovery practices after low recovery of petroleum reservoirs occurs during primary production.Salt crystal formation is a frequent occurrence whe...Water flooding and pressure maintenance are recommended to improve oil recovery practices after low recovery of petroleum reservoirs occurs during primary production.Salt crystal formation is a frequent occurrence when using these techniques.Several experimental,numerical,and theoretical studies have been done on the mechanisms underlying scaling and permeability reduction in porous media;however,there has not been a satisfactory model developed.This study developed a phenomenological model to predict formation damage caused by salt deposition.Compared with existing models,which provide a scaling tendency,the proposed model predicts the profile of scale deposition.The salt precipitation model simulates reactive fluid flow through porous media.A thermodynamic,kinetic,and flow hydrodynamic model was developed and coupled with the ion transport equation to describe the movement of ions.Further,a set of carefully designed dynamic experiments were conducted and the data were compared with the model predictions.Model forecasts and experimental data were observed to have an average absolute error(AAE)ranging from 0.68%to 5.94%,which indicates the model's suitability.展开更多
High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many appl...High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many applications in terms of radar communication, aerospace and automobile industry. However, rapid tool wear resulted from high cutting force and hard abrasion, and damaged machined surfaces are the main problem in machining Si/Al composite. This work aims to reveal the mechanisms of milling-induced damages of 70wt% Si/Al composites. A cutting force analytical model considering the characteristics of both the primary silicon particles and the cutting-edge radius was established. Milling experiments were conducted to verify the validity of the model. The results show that the analytical model exhibits a good consistency with the experimental results, and the error is about 10%. The cutting-edge radius has significant effects on the cutting force, surface roughness and damage formation. With the increase in the cutting-edge radius, both the cutting force and the surface roughness decrease firstly and then increase. When the cutting-edge radius is 27 μm, the surface roughness(Sa) reaches the minimum of 2.3 μm.Milling-induced surface damages mainly contain cracks, pits, scratches, matrix coating and burrs.The damage formation is dominated by the failure mode of primary silicon particles, which includes compressive breakage, intragranular fracture, particle pull-out, and interface debonding. In addition, the high ductility of aluminium matrix leads to matrix coating. This work provides guidance for tool selection and damage inhibition in high-efficiency and high-precision machining of high mass fraction Si/Al composites.展开更多
基金Supported by the Key Fund Project of the National Natural Science Foundation of China and Joint Fund of Petrochemical Industry(Class A)(U1762212)National Natural Science Foundation of China(52274009)"14th Five-Year"Forward-looking and Fundamental Major Science and Technology Project of CNPC(2021DJ4402)。
文摘For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection.
基金the National Natural Science Foundation of China(No.50574061)
文摘Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient buried hill Ordovician reservoirs in the Tarim Basin. Geological structure, lithology, porosity, permeability and mineral components all affect the potential for formation damage. The experimental results showed that the permeability loss was 83.8%-98.6% caused by stress sensitivity, and was 27.9%-48.1% caused by water blocking. Based on the experimental results, several main conclusions concerning stress sensitivity can be drawn as follows: the lower the core permeability and the smaller the core fracture width, the higher the stress sensitivity. Also, stress sensitivity results in lag effect for both permeability recovery and fracture closure. Aimed at the mechanisms of formation damage, a modified low-damage mixed metal hydroxide (MMH) drilling fluid system was developed, which was mainly composed of low-fluorescence shale control agent, filtration control agent, lowfluorescence lubricant and surfactant. The results of experimental evaluation and field test showed that the newly-developed drilling fluid and engineering techniques provided could dramatically increase the return permeability (over 85%) of core samples. This drilling fluid had such advantages as good rheological and lubricating properties, high temperature stability, and low filtration rate (API filtration less than 5 ml after aging at 120 ℃ for 4 hours). Therefore, fractured carbonate formations with low permeability could be protected effectively when drilling with the newly-developed drilling fluid. Meanwhile, field test showed that both penetration rate and bore stability were improved and the soaking time of the drilling fluid with formation was sharply shortened, indicating that the modified MMH drilling fluid could meet the requirements of drilling engineering and geology.
文摘Natural carbonate core samples with artificial fractures are often used to evaluate the damage of fractured carbonate formations in the laboratory. It is shown that the most frequent error for evaluation results directly from the random width characterized by the artificial fractures. To solve this problem, a series of simulated fractured core samples made of stainless steel with a given width of fracture were prepared. The relative error for the width of artificial fracture decreased to 1%. The width of natural and artificial fractures in carbonate reservoirs can be estimated by image log data. A series of tests for formation damage were conducted by using the stainless steel simulated core samples flushed with different drilling fluids, such as the sulfonate/polymer drill-in fluid and the solids-flee drill-in fluid with or without ideal packing bridging materials. Based on the experimental results using this kind of simulated cores, a novel approach to the damage control of fractured carbonate reservoirs was presented. The effective temporary plugging ring on the end face of the simulated core sample can be observed clearly. The experimental results also show that the stainless steel simulated cores made it possible to visualize the solids and filtrate invasion.
基金the research support of the College of Petroleum Engineering and Geosciences at King Fahd University of Petroleum&Minerals。
文摘The properties of oil and gas formation could be significantly damaged during drilling and completion operations as a result of mud invasion,fluid incompatibility and interaction with rock minerals.This paper presents a systematic method for evaluating formation damage during filter cake deposition(primary damage)and removal process(secondary damage).The role of primary damage in the evolution of secondary damage was also investigated.The interaction of the filter cake solvent(chelating agent solution)with the rock samples was implemented through core flooding experiment.Nuclear Magnetic Resonance(NMR)was used to evaluate the properties of the rock sample,pre and post filter cake deposition and removal processes.The results show that secondary damaged is a strong function of the location and the intensity of the primary damage.The rock type and its pore structure also play important roles in both primary and secondary damage.The extent of secondary damage depends on the amount of barium sulphate deposited during primary damage.The chelating agent used to dissolve the barites in sandstones,deposited the barite in the small pores while it enlarges the bigger pores.In contrast,the chelating agent in the carbonate samples had multiple barite deposition points.
基金supported by National Natural Science Foundation of China(Grant No.52004297 and Grant No.51991361)China Postdoctoral Science Foundation(Grant No.BX20200384)。
文摘Kinds of complex-structure wells can effectively improve production,which are widely used.However,in the process of drilling and completion,complex-structure wells with long drilling cycle and large exposed area of reservoir can lead to the fact that reservoir near wellbore is more vulnerable to the working fluid invasion,resulting in more serious formation damage.In order to quantitatively describe the reservoir formation damage in the construction of complex-structure well,taking the inclined well section as the research object,the coordinate transformation method and conformal transformation method are given according to the flow characteristics of reservoir near wellbore in anisotropic reservoir.Then the local skin factor in orthogonal plane of wellbore is deduced.Considering the un-even distribution of local skin factor along the wellbore,the oscillation decreasing model and empirical equation model of damage zone radius distribution along the wellbore direction are established and then the total skin factor model of the whole well is superimposed to realize the reservoir damage evaluation of complex-structure wells.Combining the skin factor model with the production model,the production of complex-structure wells can be predicted more accurately.The two field application cases show that the accuracy of the model can be more than 90%,which can also fully reflect the invasion characteristics of drilling and completion fluid in any well section of complex-structure wells in anisotropic reservoir,so as to further provide guidance for the scientific establish-ment of reservoir production system.
文摘Reduction in water injectivity would be harmful to the waterflood development of offshore sandstone oil reservoirs. In this paper the magnitude of formation damage during water injection was evaluated by analyzing the performance of water injection in the Bohai offshore oilfield, China. Two parameters, permeability reduction and rate of wellhead pressure rise, were proposed to evaluate the formation damage around injection wells. The pressure performance curve could be divided into three stages with different characteristics. Analysis of field data shows that formation damage caused by water injection was severe in some wells in the Bohai offshore oilfield, China. In the laboratory, the content of clay minerals in reservoir rock was analyzed and sensitivity tests (including sensitivity to water, ftow rate, alkali, salt and acid) were also conducted. Experimental results show that the reservoir had a strong to medium sensitivity to water (i.e. clay swelling) and a strong to medium sensitivity to flow rate, which may cause formation damage. For formation damage prevention, three injection schemes of clay stabilizer (CS) were studied, i.e. continuous injection of low concentration CS (CI), slug injection of high concentration CS (SI), and slug injection of high concentration CS followed by continuous injection of low concentration CS (SI-CI). Core flooding experiments show that SI-CI is an effective scheme to prevent formation damage and is recommended for the sandstone oil reservoirs in the Bohai offshore oilfield during water injection.
文摘The concern on formation damage control of high permeability sandstone reservoir has been growing in oil industry in recent years. The invasion of particles and the filtrate of drilling fluid are proven as one of the key factors accounting for reservoir damage. Based on the ideal packing theory, the practical software has been developed to optimize the blending proportion of several bridging agents, and the core flooding tests were conducted to evaluate return permeability of core samples contaminated with different drilling fluids. Experimental results show that the ideal packing approach can reduce the dynamic filtration rate, improve the return permeability and drawdown the breakthrough pressure, indicating that this kind of drilling fluids can meet the demands of formation damage control for high permeability sandstone reservoirs. Some applying procedures for formation damage control are also proposed in this paper.
文摘Colloidal gas aphrons (CGAs) were first reported by Sebba (1971) as micro bubbles (25-125 μm), composed of a gas nucleus surrounded by a thin surfactant film and created by intense stirring of a surfactant solution. Since then, these colloidal dispersions have been used for diverse applications, with a particular focus on separation processes. However, exploitation of CGAs in petroleum industry is only at the outset. CGAs were first used in west Texas in 1998, under the name Aphron drilling fluids. This kind of fluid is characterized as having a continuous phase, a high viscosity at a low shear rate and containing, as an internal phase, micro air or gas bubbles, non-coalescing and recirculating. In this paper, we illuminate the physical and chemical properties of aphron drilling fluid and its processing mechanism.
基金The authors wish to thank the Ministry of Science and Technology of the People's Republic of China(2016ZX05066).
文摘Fuzzy-ball working fluids(FBWFs)have been successfully applied in different development phases of tight reservoirs.Field reports revealed that FBWFs satisfactorily met all the operational and reservoir damage control requirements during their application.However,the damage-control mechanisms and degree of formation damage caused by fuzzy-ball fluids have not been investigated in lab-scale studies so far.In this study,the degree of fuzzy-ball-induced damage in single-and double-layer reservoirs was evaluated through core flooding experiments that were based on permeability and flow rate indexes.Additionally,its damage mechanisms were observed via scanning electron microscope and energy-dispersive spectroscopy tests.The results show that:(1)For single-layer reservoirs,the FBWF induced weak damage on coals and medium-to-weak damage on sandstones,and the difference of the damage in permeability or flow rate index on coals and sandstones is below 1%.Moreover,the minimum permeability recovery rate was above 66%.(2)For double-layer commingled reservoirs,the flow rate index revealed weak damage and the overall damage in double-layer was lower than the single-layer reservoirs.(3)There is no significant alteration in the microscopic structure of fuzzy-ball saturated cores with no evidence of fines migration.The dissolution of lead and sulfur occurred in coal samples,while tellurium in sandstone,aluminum,and magnesium in carbonate.However,the precipitation of aluminum,magnesium,and sodium occurred in sandstone but no precipitates found in coal and carbonate.The temporal plugging and dispersion characteristics of the FBWFs enable the generation of reservoir protection layers that will minimize formation damage due to solid and fluid invasion.
基金Supported by the National Natural Science Foundation of China(51604236)Open Fund of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(PLN201913)+1 种基金Science and Technology Planning Project of the Sichuan Province,China(2018JY0436)Sichuan Youth Science and Technology Innovation Research Team Project for Unconventional Oil and Gas Reservoir Protection(2016TD0016)。
文摘A coupled CFD-DEM method is used to simulate the formation process of fracture plugging zone.A photo-elastic system characterizing mesoscale force chain network developed by our own is used to model the pressure evolution in fracture plugging zone to reveal the evolution mechanism of the structure of fracture plugging zone.A theoretical basis is provided for improving the lost circulation control effect in fractured reservoirs and novel methods are proposed for selecting loss control materials and designing loss control formula.CFD-DEM simulation results show that bridging probability is the key factor determining the formation of fracture plugging zone and fracture plugging efficiency.Critical and absolute bridging concentrations are proposed as the key indexes for loss control formula design.With the increase of absolute bridging concentration,the governing factor of bridging is changed from material grain size to the combination of material grain size and friction force.Results of photo-elastic experiments show that mesoscale force chain network is the intrinsic factor affecting the evolution of pressure exerting on the fracture plugging zone and determines the macroscopic strength of fracture plugging zone.Performance parameters of loss control material affect the force chain network structure and the ratio of stronger force chain,and further impact the stability and strength of fracture plugging zone.Based on the study results,the loss control formula is optimized and new-type loss control material is designed.Laboratory experiments results show that the fracture plugging efficiency and strength is effectively improved.
基金This study was co-funded by the National Natural Science Foundation of China(Grant No.42072172,41772120)Shandong Province Natural Science Fund for Distinguished Young Scholars(Grant No.JQ201311)the Graduate Scientific and Technological Innovation Project Financially Supported by Shandong University of Science and Technology(Grant No.SDKDYC190313).
文摘Analysis of reservoir sensitivity to velocity,water,salt,acid,alkali and stress is critical for reservoir protection.To study the tight sandstone reservoir sensitivity at different formation depths(effective stress)and formation water conditions(pH,salinity,and fluid velocity),a series of dynamic core flow tests under different pH,salinity,acid,and effective stress conditions were performed on samples from tight sandstone reservoirs of the Upper Triassic Yanchang 8(T_(3)y^(8))Member and conventional reservoirs of the Middle-Lower Jurassic Yan'an 9(J_(1-2)y^(9))Member in the Ordos Basin.The results indicate that,compared with the conventional reservoirs,the tight sandstone reservoirs are more sensitive to velocity and stress,less sensitive to water,alkali and salinity,and respond better to acid fracturing.In addition,the critical conditions(salinity,velocity,pH,and stress)for pumping drilling,completion,and fracturing fluids into tight sandstone reservoirs were investigated.A combination of scanning electron microscopy coupled with energy-dispersive spectrometry(SEM-EDS),cathodoluminescence(CL),casting thin section(CTS)and nuclear magnetic resonance(NMR)images,high-pressure mercury injection capillary pressure(MICP)measurements as well as X-ray fluorescence spectral(XRF)analyses were employed to analyze the damage mechanisms of the conventional reservoirs(J_(1-2)y^(9))and tight sandstone reservoirs(T_(3)y^(8))caused by fluid invasion.The results suggest that reservoir sensitivity is primarily conditioned by the composition of detrital components and interstitial fillings,petrophysical properties,pore-throat structure,and diagenetic facies.All these factors control the sensitivity types and extent of the reser-voirs.Our results indicate that the poorer the reservoir physical properties,the stronger the reservoir heterogeneity and sensitivity,implying that tight sandstone reservoirs are more susceptible to changes in fluids than conventional reservoirs.This study offers insights into the reservoir damage types and helps to improve the design and implementation of protection measures for tight sandstone reservoir exploration.
文摘Fracturing operations can effectively improve the production of low-permeable reservoirs. The performance of fracturing fluids directly affects the fracturing efficiency and back flow capacity. As polymerbased fracturing fluids(such as guar gum(GG), polyacrylamide(HPAM), etc.) are high-viscosity fluids formed by viscosifiers and crosslinking agents, the degree of gel breakage after the fracturing operation directly influences the damage degree to the reservoir matrix and the mobility of oil angd gas produced from the reservoir into the wellbore. This study compared the viscosity, molecular weight, and particle size of the fracturing fluid after gel breakage prepared by GG and HPAM as viscosifiers, as well as evaluate their damage to the core. Results show that the viscosities of the gel-breaking fluid increased with the concentration of the viscosifier for both the HPAM-based and GG-based fracturing fluids. For the breaking fluid with the same viscosity, the molecular weight in the HPAM-based gel-breaking fluid was much larger than that in the GG-based system. Moreover, for the gel-breaking fluid with the same viscosity, the molecular particle size of the residual polymers in the HPAM-based system was smaller than that in the GG-based system. The damage to the core with the permeability of 1 × 10^(-3)μm^(2) caused by both the HPAM-based and GG-based gel-breaking fluids decreased with the increase in the solution viscosity. For the gel-breaking fluid systems with the same viscosity(i.e., 2-4 mPa s), the damage of HPAM-based fracturing fluid to low-permeability cores was greater than the GG-based fracturing fluid(45.6%-80.2%) since it had a smaller molecular particle size, ranging from 66.2% to 77.0%. This paper proposed that the damage caused by hydraulic fracturing in rock cores was related to the partilce size of residual polymers in gel-breaking solution, rather than its molecular weight. It was helpful for screening and optimizing viscosifiers used in hydraulic fracturing process.
基金supported by the National High Technology Research and Development Program of China (863 Program) (No. 2007AA06Z209)the National Natural Science Foundation of China (No. 50974104,50774062 and 50474039)
文摘Sulfur deposition in the formation, induced by a reduction in the solubility of the sulfur in the gas phase, may significantly reduce the inflow performance of sour gas wells and some wells in sour gas reservoirs have even become completely plugged with deposited sulfur within several months. Accurate prediction and effective management of sulfur deposition are crucial to the economic viability of sour gas reservoirs. In this paper, a dynamic flow experiment was carried out to investigate formation damage resulting from sulfur deposition using an improved experimental method. The core sample was extracted from the producing interval of the LG2 well, LG gas field in the Sichuan Basin. The experimental temperature was 26 °C and the initial pressure was 19 MPa. The displacement pressure continuously decreased from 19 to 10 MPa, and the depletion process lasted 15 days. Then the core was removed and dried. The core mass and core permeability were measured before and after experiments. Experimental results indicated that the core mass increased from 48.372 g before experiment to 48.386 g afterwards, while the core permeability reduced from 0.726 to 0.608 md during the experiment. Then the core was analyzed with a scanning electron microscope (SEM) and energy-dispersive X-ray mapping. The deposition pattern and micro-distribution of elemental sulfur was observed and the deposited elemental sulfur distributed as a film around the pore surface.
基金supported by the National Natural Science Foundation(Grant No.51874329 and Grant No.52004297 and Grant No.51991361)the National Natural Science Innovation Population of China(Grant No.51821092)+1 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(Grant No.ZLZX2020-01)Cooperation projects of CCDC and CUPB(CQ2021B-33-Z2-3)。
文摘Loss of drilling fluids in large porous and fractured zones inevitably up-regulates the overall cost of drilling.As a type of acid-soluble cement,magnesium oxysulfate(MOS)cement is arousing huge attention for the less hygroscopic nature and less damaging to steel casings compared with magnesium oxychloride(MOC)cement.The present study developed MOS cement as a fast setting,high strength and acid-soluble lost circulation material to reduce the problem of losses.As suggested in this study,a higher strength of MOS cement at 70℃could be achieved by elevating M_(g)O/MgSO_(4)·7 H_(2)O molar ratio or downregulating H_(2)O/MgSO_(4)·7 H_(2)O molar ratio.Boric acid and borax could act as effective retarders.Plugging slurry based on MOS cement could effectively block the simulated porous loss zones exhibiting a diameter from 1.24 mm to 1.55 mm,as well as the fractured loss zones with a width from 2 mm to 5 mm and bearing a pressure difference up to 8 MPa.Permeability recovery test demonstrated that it facilitated future oil and gas production.The successful field application in the Junggar Basin,Xinjiang,China verified the significant plugging effect of MOS cement for severe loss problems.
文摘We report a phase inversion polymer coating as a novel concept with potential to prevent clay swelling and fines generation in coal seam gas, or other petroleum, wellbores. Our approach uses polyethersulfone (PES) with N-methyl-2- pyrrolidone (NMP) as a water-soluble solvent to form a dense, low-porosity film across the clay-rich interburden layers, but a porous and permeable membrane on coal seams. This contrasting behaviour occurs because the coal contains much more free water than the clay-rich interburden layers. We demonstrate the efficacy of the method to prevent clay spalling in immersion tests and under a flow of fresh water in a visual swell test apparatus. The clay-rich rocks studied were mudstone and siltstone, and these were dip coated in the PES/NMP solution. The uncoated mudstone swelled and broke apart quickly in the immersion test and visual flow test, but the PES coated rock samples were stable for 30 days. The coated rock and coal samples were characterised by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. The morphology of coated mudstone and coated coal samples showed that the polymer formed a dense layer across the low-permeability mudstone, but an open porous structure on the coal surface. The effect of the coating on the permeability of KCl brine through coal was measured in a core-flood apparatus. Although the permeability of the coal showed some deterioration after coating, from (0.58 ± 0.12) mD to (0.3 ±0.03) mD, these results demonstrate the potential of a smart polymer coating to prevent clay swelling while remaining permeable to gas and water on coal layers.
基金supported by the National Natural Science Foundation(Project No.50574061)the Changjiang Scholars and Innovative Research Team(No.IRT0411),Ministry of Education
文摘Selecting bridging agents properly is a critical factor in designing non-damaging or low-damaging drill-in fluids. Historically, Abrams' rule has been used for this purpose. However, Abrams' rule only addresses the size of particle required to initiate a bridge. The rule does not give an optimum size nor an ideal packing sequence for minimizing fluid invasion and optimizing sealing. This paper elaborates an ideal packing approach to solving the sealing problem by sealing pores with different sizes, especially those large pores which usually make dominant contribution to permeability and thereby effectively preventing the solids and filtrate of drill-in fluids from invading into formations, compared with the conventionally used techniques. Practical software has been developed to optimize the blending proportion of several bridging agents, so as to achieve ideal packing effectiveness. The method and its use in selecting the best blending proportion of several bridging agents are also discussed in this paper. A carefully designed drill-in fluid by using the ideal packing technique (named the IPT fluid) for offshore drilling operations at the Weizhou Oilfield, Nanhai West Company, CNOOC is presented. The near 100% return permeabilities from the dynamic damage tests using reservoir cores demonstrated the excellent bridging effect provided by this drill-in fluid.
文摘Drilling into a geopressured zone will generally cause a change in a number of basic formation/ drilling relationships. This change is usually seen as a reversal of a gradual depth related trend in a lithologically uniform formation. Of all the geophysical methods, the reflection seismic method is essentially the only technique used to predict pore pressures. The seismic method detects changes of interval velocity with depth from velocity analysis of the seismic data. These changes are in turn related to lithology, pore fluid type, rock fracturing and pressure changes within a stratigraphic column. When the factors affecting the velocity are understood for a given area, a successful pressure prediction can be made. For clastic environments such as the Tertiary section of the Gulf of Mexico or the Niger delta, the interval velocity of the rocks increases with depth because of compaction. In these areas, deviations from normal compaction trends are related to abnormally high pore pressures. The adapted methods provide a much easier way to handle normal compaction trend lines. In addition to well log methods, pressure detection can be obtained via drilling parameters by applying Eaton’s DXC methods. Seismic velocities have long been used to estimate pore pressure, indeed both these quantities are influenced by variations in rock properties such as porosity, density, effective stress and so on, and high pore pressure zones are often associated with low seismic velocities. Pressure prediction from seismic data is based on fundamentals of rock physics and seismic attribute analysis. This paper hence tries to assess the use of seismic waves as a viable means to calculate pore pressure, especially in areas where no prior drilling history can be found. Then we applied these methods on LAGIA-8 well, Sinai, Egypt as a case study. Pore pressure prediction from Seismic is a very essential tool to predict pore pressure before drilling operation. This could prevent the well problem as well blowout and to prevent formation damage, especially in areas where no prior drilling history can be found.
文摘Drilling into a geopressured zone will generally cause a change in a number of basic formation/ drilling relationships. This change is usually seen as a reversal of a gradual depth related trend in a lithologically uniform formation. Of all the geophysical methods, the reflection seismic method is essentially the only technique used to predict pore pressures. The seismic method detects changes of interval velocity with depth from velocity analysis of the seismic data. These changes are in turn related to lithology, pore fluid type, rock fracturing and pressure changes within a stratigraphic column. When the factors affecting the velocity are understood for a given area, a successful pressure prediction can be made. For clastic environments such as the Tertiary section of the Gulf of Mexico or the Niger delta, the interval velocity of the rocks increases with depth because of compaction. In these areas, deviations from normal compaction trends are related to abnormally high pore pressures. The adapted methods provide a much easier way to handle normal compaction trend lines. In addition to well log methods, pressure detection can be obtained via drilling parameters by applying Eaton’s DXC methods. Seismic velocities have long been used to estimate pore pressure, indeed both these quantities are influenced by variations in rock properties such as porosity, density, effective stress and so on, and high pore pressure zones are often associated with low seismic velocities. Pressure prediction from seismic data is based on fundamentals of rock physics and seismic attribute analysis. This paper hence tries to assess the use of seismic waves as a viable means to calculate pore pressure, especially in areas where no prior drilling history can be found. Then we applied these methods on LAGIA-8 well, Sinai, Egypt as a case study. Pore pressure prediction from Seismic is a very essential tool to predict pore pressure before drilling operation. This could prevent the well problem as well blowout and to prevent formation damage, especially in areas where no prior drilling history can be found.
文摘Water flooding and pressure maintenance are recommended to improve oil recovery practices after low recovery of petroleum reservoirs occurs during primary production.Salt crystal formation is a frequent occurrence when using these techniques.Several experimental,numerical,and theoretical studies have been done on the mechanisms underlying scaling and permeability reduction in porous media;however,there has not been a satisfactory model developed.This study developed a phenomenological model to predict formation damage caused by salt deposition.Compared with existing models,which provide a scaling tendency,the proposed model predicts the profile of scale deposition.The salt precipitation model simulates reactive fluid flow through porous media.A thermodynamic,kinetic,and flow hydrodynamic model was developed and coupled with the ion transport equation to describe the movement of ions.Further,a set of carefully designed dynamic experiments were conducted and the data were compared with the model predictions.Model forecasts and experimental data were observed to have an average absolute error(AAE)ranging from 0.68%to 5.94%,which indicates the model's suitability.
基金supported by the National Natural Science Foundation of China(No.52075255)the Fundamental Research Funds for the Central Universities(No.NT2021020)。
文摘High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many applications in terms of radar communication, aerospace and automobile industry. However, rapid tool wear resulted from high cutting force and hard abrasion, and damaged machined surfaces are the main problem in machining Si/Al composite. This work aims to reveal the mechanisms of milling-induced damages of 70wt% Si/Al composites. A cutting force analytical model considering the characteristics of both the primary silicon particles and the cutting-edge radius was established. Milling experiments were conducted to verify the validity of the model. The results show that the analytical model exhibits a good consistency with the experimental results, and the error is about 10%. The cutting-edge radius has significant effects on the cutting force, surface roughness and damage formation. With the increase in the cutting-edge radius, both the cutting force and the surface roughness decrease firstly and then increase. When the cutting-edge radius is 27 μm, the surface roughness(Sa) reaches the minimum of 2.3 μm.Milling-induced surface damages mainly contain cracks, pits, scratches, matrix coating and burrs.The damage formation is dominated by the failure mode of primary silicon particles, which includes compressive breakage, intragranular fracture, particle pull-out, and interface debonding. In addition, the high ductility of aluminium matrix leads to matrix coating. This work provides guidance for tool selection and damage inhibition in high-efficiency and high-precision machining of high mass fraction Si/Al composites.