The forming quality of high-strength TA18 titanium alloy tube during numerical control bending in changing bending angle β, relative bending radius R/D and tube sizes such as diameter D and wall thickness t was clari...The forming quality of high-strength TA18 titanium alloy tube during numerical control bending in changing bending angle β, relative bending radius R/D and tube sizes such as diameter D and wall thickness t was clarified by finite element simulation. The results show that the distribution of wall thickness change ratio Δt and cross section deformation ratio ΔD are very similar under different β; the Δt and ΔD decrease with the increase of R/D, and to obtain the qualified bent tube, the R/D must be greater than 2.0; the wall thinning ratio Δto slightly increases with larger D and t, while the wall thickening ratio Δti and ΔD increase with the larger D and smaller t; the Δto and ΔD firstly decrease and then increase, while the Δti increases, for the same D/t with the increase of D and t.展开更多
Half axle gears is produced by precision forging popularly because of the advantages in minimum machining allowances, lower material consumption and good service properties. But the forming quality of precision forgin...Half axle gears is produced by precision forging popularly because of the advantages in minimum machining allowances, lower material consumption and good service properties. But the forming quality of precision forging is difficult to control. Many simulations and analysis of precision forging process were taken by previous researchers. But no concrete method is proposed to evaluate and optimize the forming quality of half axel gears. The primary purpose of this work is improving the forming quality of half axel gears by analyzing and optimizing the affected factors of forming quality. The enclosed-die warm forging process of half axle gears was developed, and a new type of die-set used on double action hydraulic press was brought forward. The main influential factors of precision forming quality were analyzed after the forming process had been simulated by using finite element method(FEM). These factors include die structure, web thickness and web position. A method used to evaluate the forming quality was established, which investigated the maximal forming load, the metal filling rate and the material damage factor. The FEM simulations of half axle gears precision forging were evaluated by this method. The results show that the best forming quality can be achieved when the punches were added with bosses, the web located at the middle plant of the gear, and the web thickness was 30 percent of the inner hole diameter. Verification experiments taking the above optimized parameters were performed on a 7.8 MN double action hydraulic press. The trial products were formed well. And their geometric precision meets the demand. The verification result shows that the optimization of the influential factors, according to the simulations and the evaluation method, can improve the forming quality. The new structure of precision forging die-set and the new evaluation method guarantee a high forming quality ofhalfaxel gears.展开更多
Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer...Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer deviation, bending moment, wall thickness variation and crosssection distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to auicklv predict the forming aualitv of tube numerical control (NC) bending.展开更多
Crimping is used in production of large diameter submerged-arc welding pipes. Many researches are focused on crimping in certain manufacturing mode of welding pipe. The application scopes of research achievements beco...Crimping is used in production of large diameter submerged-arc welding pipes. Many researches are focused on crimping in certain manufacturing mode of welding pipe. The application scopes of research achievements become limited due to lack of uniformity in theoretical analysis. In order to propose a crimping prediction method in order to control forming quality, the theory model of crimping based on elastic-plastic mechanics is established. The main technical parameters are determined by theoretical analysis, including length of crimping, base radius of punch, terminal angle of punch, base radius of die, terminal angle of die and horizontal distance between punch and die. In addition, a method used to evaluate the forming quality is presented, which investigates the bending angle after springback, forming force, straight edge length and equivalent radius of curvature. In order to investigate the effects of technical parameters on forming quality, a two-dimensional finite element model is established by finite element software ABAQUS. The finite element model is verified in that its shapes error is less than 5% by comparable experiments, which shows that their geometric precision meets demand. The crimping characteristics is obtained, such as the distribution of stress and strain and the changes of forming force, and the relation curves of technical parameters on forming quality are given by simulation analysis. The sensitivity analysis indicates that the effects of length of crimping, technical parameters of punch on forming quality are significant. In particular, the data from simulation analysis are regressed by response surface method (RSM) to establish prediction model. The feasible technical parameters are obtained from the prediction model. This method presented provides a new thought used to design technical parameters of crimping forming and makes a basis for improving crimping forming quality.展开更多
In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding proce...In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding process parameters on the quality of weld forming under short-circuit transition,the design of 3 factors and 3 levels of a total of 9 groups of orthogonal tests,welding current,welding voltage,welding speed as input parameters:effective area ratio,humps,actual linear power density,aspect ratio,Vickers hardness as output paramet-ers(response targets).Using range analysis and trend charts,we can visually depict the relationship between input parameters and a single output parameter,ultimately determining the optimal process parameters that impact the single output index.Then combined with gray the-ory to transform the three response targets into a single gray relational grade(GRG)for analysis,the optimal combination of the weld mor-phology parameters as follows:welding current 100 A,welding voltage 25 V,welding speed 30 cm/min.Finally,validation experiments were conducted,and the results showed that the error between the gray relational grade and the predicted value was 2.74%.It was observed that the effective area ratio of the response target significantly improved,validating the reliability of the orthogonal gray relational method.展开更多
In three-dimensional free-bending forming(3D-FBF),the tube is not overly constrained,and the plastic deformation behavior and forming quality of the bent tube are significantly affected by the critical structure of th...In three-dimensional free-bending forming(3D-FBF),the tube is not overly constrained,and the plastic deformation behavior and forming quality of the bent tube are significantly affected by the critical structure of the forming die lining.However,the effects of die-lining structural parameters on the tube quality,and a method to determine the combination of die-lining structural parameters is yet to be devised.This study aims to propose a new framework that allows one to understand the effects of various die-lining structural parameters on tube quality and to propose the best combination of die-lining structural parameters.First,finite-element modeling is performed to simulate 3D-FBF and examine the effects of individual die-lining structures on the quality of tube formation.The simulation results show that the deformation-zone length and die gap are positively correlated with the tube-section distortion and wall-thickness variation,whereas it shows an opposite trend with respect to the bending radius.Additionally,the lining chamfer radius of the bending die and the guide lining chamfer radius minimally affect the tube forming quality.Subsequently,the optimal die-lining structure is obtained using the response-surface method.The tube cross-sectional distortion rate reduced from 2.73 to 2.53%after the die lining is optimized.Additionally,the average inner-wall thickness reduced to 1.06 mm,whereas the average outer-wall thickness increased to 0.97 mm.This paper proposes a method for optimizing the forming-die-lining mechanism and for improving the tube forming quality in 3D-FBF.展开更多
Magnesium and its alloys,as a promising class of materials,is popular in lightweight application and biomedical implants due to their low density and good biocompatibility.Additive manufacturing(AM)of Mg and its alloy...Magnesium and its alloys,as a promising class of materials,is popular in lightweight application and biomedical implants due to their low density and good biocompatibility.Additive manufacturing(AM)of Mg and its alloys is of growing interest in academia and industry.The domain-by-domain localized forming characteristics of AM leads to unique microstructures and performances of AM-process Mg and its alloys,which are different from those of traditionally manufactured counterparts.However,the intrinsic mechanisms still remain unclear and need to be in-depth explored.Therefore,this work aims to discuss and analyze the possible underlying mechanisms regarding defect appearance and elimination,microstructure formation and evolution,and performance improvement,based on presenting a comprehensive and systematic review on the relationship between process parameters,forming quality,microstructure characteristics and resultant performances.Lastly,some key perspectives requiring focus for further progression are highlighted to promote development of AM-processed Mg and its alloys and accelerate their industrialization.展开更多
The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Th...The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Therefore,the lightweight design of BPPs should be considered as a priority.Honeycomb sandwich structures meet some requirements for bipolar plates,such as high mechanical strength and lightweight.Animals and plants in nature provide many excellent structures with characteristics such as low density and high energy absorption capacity.In this work,inspired by the microstructures of the Cybister elytra,a novel bio-inspired vertical honeycomb sandwich(BVHS)structure was designed and manufactured by laser powder bed fusion(LPBF)for the application of lightweight BPPs.Compared with the conventional vertical honeycomb sandwich(CVHS)structure formed by LPBF under the same process parameters setting,the introduction of fractal thin walls enabled self-supporting and thus improved LPBF formability.In addition,the BVHS structure exhibited superior energy absorption(EA)capability and bending properties.It is worth noting that,compared with the CVHS structure,the specific energy absorption(SEA)and specific bending strength of the BVHS structure increased by 56.99%and 46.91%,respectively.Finite element analysis(FEA)was employed to study stress distributions in structures during bending and analyze the influence mechanism of the fractal feature on the mechanical properties of BVHS structures.The electrical conductivity of structures were also studied in this work,the BVHS structures were slightly lower than the CVHS structure.FEA was also conducted to analyze the current flow direction and current density distribution of BVHS structures under a constant voltage,illustrating the influence mechanism of fractal angles on electrical conductivity properties.Finally,in order to solve the problem of trapped powder inside the enclosed unit cells,a droplet-shaped powder outlet was designed for LPBF-processed components.The number of powder outlets was optimized based on bending properties.Results of this work could provide guidelines for the design of lightweight BPPs with high mechanical strength and high electrical conductivity.展开更多
In the present work,selective laser melting(SLM)technology was utilized for manufacturing CX stainless steel samples under a series of laser parameters.The effect of laser linear energy density on the microstructure c...In the present work,selective laser melting(SLM)technology was utilized for manufacturing CX stainless steel samples under a series of laser parameters.The effect of laser linear energy density on the microstructure characteristics,phase distribution,crystallographic orientation and mechanical properties of these CX stainless steel samples were investigated theoretically and experimentally via scanning electron microscope(SEM),X-ray diffraction(XRD),electron backscatter diffraction(EBSD)and transmission electron microscope(TEM).Based on the systematic study,the SLM CX stainless steel sample with best surface roughness(Ra=4.05±1.8μm)and relative density(Rd=99.72%±0.22%)under the optimal linear density(η=245 J/m)can be obtained.SLM CX stainless steel was primarily constituted by a large number of fine martensite(α’phase)structures(i.e.,cell structures,cellular dendrites and blocky grains)and a small quantity of austenite(γphase)structures.The pre ferred crystallographic orientation(i.e.,<111>direction)can be determined in the XZ plane of the SLM CX sample.Furthermore,under the optimal linear energy density,the good combinations with the highest ultimate tensile strength(UTS=1068.0%±5.9%)and the best total elongation(TE=15.70%±0.26%)of the SLM CX sample can be attained.Dislocation strengthening dominates the strengthening mechanism of the SLM CX sample in as-built state.展开更多
The bending section of tube between the bending die and the guider is in a less constrained state during the free bending process.The free bending dies have the important impact on the plastic deformation behavior and...The bending section of tube between the bending die and the guider is in a less constrained state during the free bending process.The free bending dies have the important impact on the plastic deformation behavior and the forming quality of tube.To study the evolution law of the deformation behavior of tube with the die structure parameters and optimize the free bending die parameters,the free bending experiments and the corresponding numerical simulations were carried out.The design principle of free bending die was illustrated.The free bending experiment was conducted to verify the reliability of the numerical simulation method.Based on the numerical simulation results,the influence of the distance between the center point of bending die and the front end of guider on the forming quality of bent tube is more obvious than that of the fillet of guider.However,the fillet of bending die hardly affects the stress and strain distribution and the evolution of the wall thickness.Finally,the free bending experiments with the newly determined free bending dies were conducted.The ultimate bending radius of bent tube is reduced and the forming quality is improved.展开更多
基金Project(GJJ150810)supported by the Research Project of Science and Technology for Jiangxi Province Department of Education,ChinaProject(gf201501001)supported by National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University,ChinaProject(BSJJ2015015)supported by Doctor Start-up Fund of Jiangxi Science&Technology Normal University,China
文摘The forming quality of high-strength TA18 titanium alloy tube during numerical control bending in changing bending angle β, relative bending radius R/D and tube sizes such as diameter D and wall thickness t was clarified by finite element simulation. The results show that the distribution of wall thickness change ratio Δt and cross section deformation ratio ΔD are very similar under different β; the Δt and ΔD decrease with the increase of R/D, and to obtain the qualified bent tube, the R/D must be greater than 2.0; the wall thinning ratio Δto slightly increases with larger D and t, while the wall thickening ratio Δti and ΔD increase with the larger D and smaller t; the Δto and ΔD firstly decrease and then increase, while the Δti increases, for the same D/t with the increase of D and t.
基金supported by Chongqing Municipal Science and Technology Committee of China (Grant No. 2005AA3012-4)
文摘Half axle gears is produced by precision forging popularly because of the advantages in minimum machining allowances, lower material consumption and good service properties. But the forming quality of precision forging is difficult to control. Many simulations and analysis of precision forging process were taken by previous researchers. But no concrete method is proposed to evaluate and optimize the forming quality of half axel gears. The primary purpose of this work is improving the forming quality of half axel gears by analyzing and optimizing the affected factors of forming quality. The enclosed-die warm forging process of half axle gears was developed, and a new type of die-set used on double action hydraulic press was brought forward. The main influential factors of precision forming quality were analyzed after the forming process had been simulated by using finite element method(FEM). These factors include die structure, web thickness and web position. A method used to evaluate the forming quality was established, which investigated the maximal forming load, the metal filling rate and the material damage factor. The FEM simulations of half axle gears precision forging were evaluated by this method. The results show that the best forming quality can be achieved when the punches were added with bosses, the web located at the middle plant of the gear, and the web thickness was 30 percent of the inner hole diameter. Verification experiments taking the above optimized parameters were performed on a 7.8 MN double action hydraulic press. The trial products were formed well. And their geometric precision meets the demand. The verification result shows that the optimization of the influential factors, according to the simulations and the evaluation method, can improve the forming quality. The new structure of precision forging die-set and the new evaluation method guarantee a high forming quality ofhalfaxel gears.
基金the National Natural Science Foundation of China (No.51164030)National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University (No.gf201501001) for the support on this research
文摘Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer deviation, bending moment, wall thickness variation and crosssection distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to auicklv predict the forming aualitv of tube numerical control (NC) bending.
基金supported by Hebei Excellent Youth Fund of Science and Technology Research for Colleges and Universities of China(Grant NoY2012035)
文摘Crimping is used in production of large diameter submerged-arc welding pipes. Many researches are focused on crimping in certain manufacturing mode of welding pipe. The application scopes of research achievements become limited due to lack of uniformity in theoretical analysis. In order to propose a crimping prediction method in order to control forming quality, the theory model of crimping based on elastic-plastic mechanics is established. The main technical parameters are determined by theoretical analysis, including length of crimping, base radius of punch, terminal angle of punch, base radius of die, terminal angle of die and horizontal distance between punch and die. In addition, a method used to evaluate the forming quality is presented, which investigates the bending angle after springback, forming force, straight edge length and equivalent radius of curvature. In order to investigate the effects of technical parameters on forming quality, a two-dimensional finite element model is established by finite element software ABAQUS. The finite element model is verified in that its shapes error is less than 5% by comparable experiments, which shows that their geometric precision meets demand. The crimping characteristics is obtained, such as the distribution of stress and strain and the changes of forming force, and the relation curves of technical parameters on forming quality are given by simulation analysis. The sensitivity analysis indicates that the effects of length of crimping, technical parameters of punch on forming quality are significant. In particular, the data from simulation analysis are regressed by response surface method (RSM) to establish prediction model. The feasible technical parameters are obtained from the prediction model. This method presented provides a new thought used to design technical parameters of crimping forming and makes a basis for improving crimping forming quality.
基金supported by Major Special Projects of Science and Technology in Fujian Province,(Grant No.2020HZ03018)Natural Science Foundation of Fujian Province(Grant No.2020J01873).
文摘In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding process parameters on the quality of weld forming under short-circuit transition,the design of 3 factors and 3 levels of a total of 9 groups of orthogonal tests,welding current,welding voltage,welding speed as input parameters:effective area ratio,humps,actual linear power density,aspect ratio,Vickers hardness as output paramet-ers(response targets).Using range analysis and trend charts,we can visually depict the relationship between input parameters and a single output parameter,ultimately determining the optimal process parameters that impact the single output index.Then combined with gray the-ory to transform the three response targets into a single gray relational grade(GRG)for analysis,the optimal combination of the weld mor-phology parameters as follows:welding current 100 A,welding voltage 25 V,welding speed 30 cm/min.Finally,validation experiments were conducted,and the results showed that the error between the gray relational grade and the predicted value was 2.74%.It was observed that the effective area ratio of the response target significantly improved,validating the reliability of the orthogonal gray relational method.
基金Supported by Open Fund of Jiangsu Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center of China(Grant No.ZK21-05-04)National Natural Science Foundation of China(Grant Nos.52105360,52175328)+1 种基金Fundamental Research Funds for the Central Universities of China(Grant No.NS2022061)Prince Sattam bin Abdulaziz University of Saudi Arabia(Grant No.PSAU/2024/R/1446).
文摘In three-dimensional free-bending forming(3D-FBF),the tube is not overly constrained,and the plastic deformation behavior and forming quality of the bent tube are significantly affected by the critical structure of the forming die lining.However,the effects of die-lining structural parameters on the tube quality,and a method to determine the combination of die-lining structural parameters is yet to be devised.This study aims to propose a new framework that allows one to understand the effects of various die-lining structural parameters on tube quality and to propose the best combination of die-lining structural parameters.First,finite-element modeling is performed to simulate 3D-FBF and examine the effects of individual die-lining structures on the quality of tube formation.The simulation results show that the deformation-zone length and die gap are positively correlated with the tube-section distortion and wall-thickness variation,whereas it shows an opposite trend with respect to the bending radius.Additionally,the lining chamfer radius of the bending die and the guide lining chamfer radius minimally affect the tube forming quality.Subsequently,the optimal die-lining structure is obtained using the response-surface method.The tube cross-sectional distortion rate reduced from 2.73 to 2.53%after the die lining is optimized.Additionally,the average inner-wall thickness reduced to 1.06 mm,whereas the average outer-wall thickness increased to 0.97 mm.This paper proposes a method for optimizing the forming-die-lining mechanism and for improving the tube forming quality in 3D-FBF.
基金supported by Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.22JK0479)Research Start-up Project of Xi’an University of Technology(Grant No.101-256082204)+5 种基金International Science and Technology Cooperation Program of Shaanxi Province(No.2023-GHZD-50)Project of Science and Technology Shaanxi Province(No.2023-JC-YB-412)Project of Science and Technology Shaanxi Province(No.2023-JC-QN-0573)Projects of Major Innovation Platforms for Scientific and Technological and Local Transformation of Scientific and Technological Achievements of Xi’an(No.20GXSF0003)Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an(No.2022JHZDZH-0039)Higher Education Institution Discipline Innovation and Intelligence Base of Shaanxi Provincial(No.S2021-ZC-GXYZ-0011).
文摘Magnesium and its alloys,as a promising class of materials,is popular in lightweight application and biomedical implants due to their low density and good biocompatibility.Additive manufacturing(AM)of Mg and its alloys is of growing interest in academia and industry.The domain-by-domain localized forming characteristics of AM leads to unique microstructures and performances of AM-process Mg and its alloys,which are different from those of traditionally manufactured counterparts.However,the intrinsic mechanisms still remain unclear and need to be in-depth explored.Therefore,this work aims to discuss and analyze the possible underlying mechanisms regarding defect appearance and elimination,microstructure formation and evolution,and performance improvement,based on presenting a comprehensive and systematic review on the relationship between process parameters,forming quality,microstructure characteristics and resultant performances.Lastly,some key perspectives requiring focus for further progression are highlighted to promote development of AM-processed Mg and its alloys and accelerate their industrialization.
基金Supported by Defense Industrial Technology Development Program of China(Grant No.JCKY2020605C007)Key Research and Development Program of Jiangsu Province of China(Grant Nos.BE2022069,BE2022069-1,BE2022069-3)Aeronautical Science Foundation of China(Grant No.2020Z049052001).
文摘The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Therefore,the lightweight design of BPPs should be considered as a priority.Honeycomb sandwich structures meet some requirements for bipolar plates,such as high mechanical strength and lightweight.Animals and plants in nature provide many excellent structures with characteristics such as low density and high energy absorption capacity.In this work,inspired by the microstructures of the Cybister elytra,a novel bio-inspired vertical honeycomb sandwich(BVHS)structure was designed and manufactured by laser powder bed fusion(LPBF)for the application of lightweight BPPs.Compared with the conventional vertical honeycomb sandwich(CVHS)structure formed by LPBF under the same process parameters setting,the introduction of fractal thin walls enabled self-supporting and thus improved LPBF formability.In addition,the BVHS structure exhibited superior energy absorption(EA)capability and bending properties.It is worth noting that,compared with the CVHS structure,the specific energy absorption(SEA)and specific bending strength of the BVHS structure increased by 56.99%and 46.91%,respectively.Finite element analysis(FEA)was employed to study stress distributions in structures during bending and analyze the influence mechanism of the fractal feature on the mechanical properties of BVHS structures.The electrical conductivity of structures were also studied in this work,the BVHS structures were slightly lower than the CVHS structure.FEA was also conducted to analyze the current flow direction and current density distribution of BVHS structures under a constant voltage,illustrating the influence mechanism of fractal angles on electrical conductivity properties.Finally,in order to solve the problem of trapped powder inside the enclosed unit cells,a droplet-shaped powder outlet was designed for LPBF-processed components.The number of powder outlets was optimized based on bending properties.Results of this work could provide guidelines for the design of lightweight BPPs with high mechanical strength and high electrical conductivity.
基金supported financially by the Sciences Platform Environment and Capacity Building Projects of GDAS(No.2019GDASYL-0502006)the Key R&D Program of Guangdong Province(No.2020B090923002)+3 种基金the Guangdong Academy of Science Projects(No.2021GDASYL-20210102005)the Guangdong Province Science and Technology Plan Projects(No.2020A1515011096)the Guangzhou Project of Science&Technology(Nos.202007020008 and 201807010030)the support from the Program of CSC(No.201801810106)。
文摘In the present work,selective laser melting(SLM)technology was utilized for manufacturing CX stainless steel samples under a series of laser parameters.The effect of laser linear energy density on the microstructure characteristics,phase distribution,crystallographic orientation and mechanical properties of these CX stainless steel samples were investigated theoretically and experimentally via scanning electron microscope(SEM),X-ray diffraction(XRD),electron backscatter diffraction(EBSD)and transmission electron microscope(TEM).Based on the systematic study,the SLM CX stainless steel sample with best surface roughness(Ra=4.05±1.8μm)and relative density(Rd=99.72%±0.22%)under the optimal linear density(η=245 J/m)can be obtained.SLM CX stainless steel was primarily constituted by a large number of fine martensite(α’phase)structures(i.e.,cell structures,cellular dendrites and blocky grains)and a small quantity of austenite(γphase)structures.The pre ferred crystallographic orientation(i.e.,<111>direction)can be determined in the XZ plane of the SLM CX sample.Furthermore,under the optimal linear energy density,the good combinations with the highest ultimate tensile strength(UTS=1068.0%±5.9%)and the best total elongation(TE=15.70%±0.26%)of the SLM CX sample can be attained.Dislocation strengthening dominates the strengthening mechanism of the SLM CX sample in as-built state.
基金The investigation was supported from the Opening Project of State Key Lab of Digital Manufacturing Equipment&Technology(No.DMETKF2021004)the National Natural Science Foundation of China(Nos.52105360,U1937206,and 52175328)+1 种基金2021 Jiangsu Shuangchuang Talent Program(JSSCBS20210157)Fundamental Research Funds for the Central Universities(No.NS2022061).
文摘The bending section of tube between the bending die and the guider is in a less constrained state during the free bending process.The free bending dies have the important impact on the plastic deformation behavior and the forming quality of tube.To study the evolution law of the deformation behavior of tube with the die structure parameters and optimize the free bending die parameters,the free bending experiments and the corresponding numerical simulations were carried out.The design principle of free bending die was illustrated.The free bending experiment was conducted to verify the reliability of the numerical simulation method.Based on the numerical simulation results,the influence of the distance between the center point of bending die and the front end of guider on the forming quality of bent tube is more obvious than that of the fillet of guider.However,the fillet of bending die hardly affects the stress and strain distribution and the evolution of the wall thickness.Finally,the free bending experiments with the newly determined free bending dies were conducted.The ultimate bending radius of bent tube is reduced and the forming quality is improved.