Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic...Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic FEM code has been developed. Isothermal forging process of a cylindrical housing has been simulated. The simulation results show that the given techniques and the FEM code are reasonable and feasible for three-dimensional bulk forming processes.展开更多
The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/stra...The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method.展开更多
As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas e...As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas es. A key component of an integrated environment is the use of computational eng ineering to assist and support solutions for complex design. Computer methods fo r structural, flow and thermal analysis are well developed and have been used in design for many years. Many software packages are now available which provi de an advanced capability. However, they are not designed for modelling of powde r forming processes. This paper describes the powder compaction software (PCS_SU T), which is designed for pre- and post-processing for computational simulatio n of the process compaction of powder. In the PCS_SUT software, the adaptive analysis of transient metal powder forming process is simulated by the finite element method based on deformation theories . The error estimates and adaptive remeshing schemes are applied for updated co -ordinate analysis. A generalized Newmark scheme is used for the time domain di scretization and the final nonlinear equations are solved by a Newton-Raphson p rocedure. An incremental elasto-plastic material model is used to simulate the compaction process. To describe the constitutive model of nonlinear behaviour of powder materials, a combination of Mohr-Coulomb and elliptical yield cap model is applied. This model reflects the yielding, frictional and densification char acteristics of powder along with strain and geometrical hardening which occurs d uring the compaction process. A hardening rule is used to define the dependence of the yield surface on the degree of plastic straining. A plasticity theory for friction is employed in the treatment of the powder-tooling interface. The inv olvement of two different materials, which have contact and relative movement in relation to each other, must be considered. A special formulation for friction modelling is coupled with a material formulation. The interface behaviour betwee n the die and the powder is modelled by using an interface element mesh. In the present paper, we have demonstrated pre- and post-processor finite elem ent software, written in Visual Basic, to generate the graphical model and visua lly display the computed results. The software consist of three main part: · Pre-processor: It is used to create the model, generate an app ropriate finite element grid, apply the appropriate boundary conditions, and vie w the total model. The geometric model can be used to associate the mesh with th e physical attributes such as element properties, material properties, or loads and boundary conditions. · Analysis: It can deal with two-dimensional and axi-symmetric applications for linear and non-linear behaviour of material in static and dyna mic analyses. Both triangular and quadrilateral elements are available in the e lement library, including 3-noded, 6-noded and 7-noded (T6B1) triangles and 4 -noded, 8-noded and 9-noded quadrilaterals. The direct implicit algorithm bas ed on the generalized Newmark scheme is used for the time integration and an aut omatic time step control facility is provided. For non-linear iteration, choice s among fully or modified Newton-Raphson method and quasi-Newton method, using the initial stiffness method, Davidon inverse method or BFGS inverse method, ar e possible. · Post-processor: It provides visualization of the computed resu lts, when the finite element model and analysis have been completed. Post-proce ssing is vital to allow the appropriate interpretation of the completed results of the finite element analysis. It provides the visual means to interpret the va st amounts of computed results generated. Finally, the powder behaviour during the compaction of a multi-level component is numerically simulated by the PCS_SUT software, as shown in Fig.1. The predict ive compaction forces at different displacements are computed and compared with the available experimental展开更多
The process of soft-punch hydro-forming was use.d to form some workpieces. However, it has not been completely understood until now. In this paper, based on some primary experiments, in which cups have been tried unde...The process of soft-punch hydro-forming was use.d to form some workpieces. However, it has not been completely understood until now. In this paper, based on some primary experiments, in which cups have been tried under different working conditions with the soft-punch hydro-forming process, systematical know-how about why the LDR of a metal sheet is different, how working conditions influence qualities of a work-piece, and how the deformation takes place has been achieved when simulations are employed. All these results claim that the cup depth heavily weighs on the cup wall thinning rate, and a satisfied complex part can be achieved when the contacting time between the sheet and the female die is under our control well by a movable slider, which is fixed as the bottom of the female die.展开更多
The numerical simulation on drawing process of automotive B-pillar was carried out on AutoForm software,and dangerous forming areas were discovered.The processing parameters,such as the layout of drawbeads,blank holdi...The numerical simulation on drawing process of automotive B-pillar was carried out on AutoForm software,and dangerous forming areas were discovered.The processing parameters,such as the layout of drawbeads,blank holding force and the shape of blank,were adjusted and optimized according to the simulation results.Results indicate that the quality defects can be forecast and removed,which improves the stability of forming process.The cost of design is decreased and the research cycle is shortened.It is proved that the drawing process and die design of B-pillar forming are feasible in actual production.展开更多
Taking Ti-6Al-4V specimens into consideration, the coupled thermal-electrical finite element model has been developed in Abaqus/Explicit to simulate the heating process in Gleeble 3800 and to study the temperature his...Taking Ti-6Al-4V specimens into consideration, the coupled thermal-electrical finite element model has been developed in Abaqus/Explicit to simulate the heating process in Gleeble 3800 and to study the temperature history and distribution in the specimen. In order to verify the finite element (FE) results, thermal tests are carried out on Gleeble 3800 for a Ti-6Al-4V specimen with a slot to in the centre of the specimen. The effects of the specimen size, heating rate, and air convection on the temperature distribution over the specimen have been investigated. The conclusions can be drawn as: the temperature gradient of the specimen decreases as the specimen size, heating rate, and vacuuming decrease.展开更多
Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key formin...Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key forming conditions of cold HR of bearing steel-balls were detailedly described. Then, by taking steel-ball rolling elements of the B7008 C angular contact ball bearing as an example, a completed 3D elastic-plastic FE model of cold HR forming process was established under SIMUFACT software environment. Furthermore, the deformation characteristics in HR process were discovered, including the forming process, evolution and distribution laws of strain, stress and damage based on Lemaitre relative damage model. The results reveal that the central loosening and cavity defects in HR process may have a combined effect of large negative hydrostatic pressure(positive mean stress)caused by multi-dimensional tensile stresses, high level transverse tensile stress, and circular-alternating shear stress in cross section.展开更多
The paper presents a mathematical model ofbrushless DC machine induced by permanent magnets. Its construction uses the classical model of permanent magnet synchronous machine and induced model of power inverter using ...The paper presents a mathematical model ofbrushless DC machine induced by permanent magnets. Its construction uses the classical model of permanent magnet synchronous machine and induced model of power inverter using the serraphil form. The results of the computer simulation were presented for such states: startup, work under active constant load and the behavior of the machine in terms of exponential and stepping change of the power inverter's control angle.展开更多
The eclipsed form arrangement and march-past method of water intake-outlet arrangements in power plants were researched by 3-D numerical simulation based on the k-e two-equation turbulence model. Firstly, the flowing ...The eclipsed form arrangement and march-past method of water intake-outlet arrangements in power plants were researched by 3-D numerical simulation based on the k-e two-equation turbulence model. Firstly, the flowing characteristics of eclipsed form arrangement were analyzed and the effects of some main factors on inlet temperature were investigated. The simulation results are basically in agreement with those of the previous experiments. Then, by comparing the inlet temperature of the above two intake-outlet methods, the superiority and its existent conditions of the eclipsed form were examined.展开更多
Sheet metal forming is one of the most preferred manufacturing processes in automotive and aerospace industries. However, due to increase in fuel prices and more stringent environmental regulation, these industries ar...Sheet metal forming is one of the most preferred manufacturing processes in automotive and aerospace industries. However, due to increase in fuel prices and more stringent environmental regulation, these industries are facing many challenges to meet the criteria. Due to this, many efforts in design and manufacturing were considered and presented.Those efforts were implementing lighter-weight materials like aluminum and magnesium(but they have higher elasticity as compared to steel) and implementing higher-strength steel with lower thickness. The main challenge found in both cases is springback after deformation. Springback is the elastic recovery after the part is unloaded. In this paper, the 3D channels with large length were deformed numerically and springback at different section was predicted. For this purpose, tailorwelded blank was considered. The geometric change along the long axis was also discussed. In addition, the effect of flange springback on wall springback was also analyzed. It was found that different section produced different springback and greater influence of flange springback. To validate the numerical simulation approach, the experiments on one case were performed and compared.展开更多
基金This work was supported by the Brain Korea 2lProject and the Grallt of Post-Doc Program, KyungpookNational University (1999).
文摘Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic FEM code has been developed. Isothermal forging process of a cylindrical housing has been simulated. The simulation results show that the given techniques and the FEM code are reasonable and feasible for three-dimensional bulk forming processes.
基金Project(50575143)supported by the National Natural Science Foundation of ChinaProject(20040248005)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method.
文摘As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas es. A key component of an integrated environment is the use of computational eng ineering to assist and support solutions for complex design. Computer methods fo r structural, flow and thermal analysis are well developed and have been used in design for many years. Many software packages are now available which provi de an advanced capability. However, they are not designed for modelling of powde r forming processes. This paper describes the powder compaction software (PCS_SU T), which is designed for pre- and post-processing for computational simulatio n of the process compaction of powder. In the PCS_SUT software, the adaptive analysis of transient metal powder forming process is simulated by the finite element method based on deformation theories . The error estimates and adaptive remeshing schemes are applied for updated co -ordinate analysis. A generalized Newmark scheme is used for the time domain di scretization and the final nonlinear equations are solved by a Newton-Raphson p rocedure. An incremental elasto-plastic material model is used to simulate the compaction process. To describe the constitutive model of nonlinear behaviour of powder materials, a combination of Mohr-Coulomb and elliptical yield cap model is applied. This model reflects the yielding, frictional and densification char acteristics of powder along with strain and geometrical hardening which occurs d uring the compaction process. A hardening rule is used to define the dependence of the yield surface on the degree of plastic straining. A plasticity theory for friction is employed in the treatment of the powder-tooling interface. The inv olvement of two different materials, which have contact and relative movement in relation to each other, must be considered. A special formulation for friction modelling is coupled with a material formulation. The interface behaviour betwee n the die and the powder is modelled by using an interface element mesh. In the present paper, we have demonstrated pre- and post-processor finite elem ent software, written in Visual Basic, to generate the graphical model and visua lly display the computed results. The software consist of three main part: · Pre-processor: It is used to create the model, generate an app ropriate finite element grid, apply the appropriate boundary conditions, and vie w the total model. The geometric model can be used to associate the mesh with th e physical attributes such as element properties, material properties, or loads and boundary conditions. · Analysis: It can deal with two-dimensional and axi-symmetric applications for linear and non-linear behaviour of material in static and dyna mic analyses. Both triangular and quadrilateral elements are available in the e lement library, including 3-noded, 6-noded and 7-noded (T6B1) triangles and 4 -noded, 8-noded and 9-noded quadrilaterals. The direct implicit algorithm bas ed on the generalized Newmark scheme is used for the time integration and an aut omatic time step control facility is provided. For non-linear iteration, choice s among fully or modified Newton-Raphson method and quasi-Newton method, using the initial stiffness method, Davidon inverse method or BFGS inverse method, ar e possible. · Post-processor: It provides visualization of the computed resu lts, when the finite element model and analysis have been completed. Post-proce ssing is vital to allow the appropriate interpretation of the completed results of the finite element analysis. It provides the visual means to interpret the va st amounts of computed results generated. Finally, the powder behaviour during the compaction of a multi-level component is numerically simulated by the PCS_SUT software, as shown in Fig.1. The predict ive compaction forces at different displacements are computed and compared with the available experimental
文摘The process of soft-punch hydro-forming was use.d to form some workpieces. However, it has not been completely understood until now. In this paper, based on some primary experiments, in which cups have been tried under different working conditions with the soft-punch hydro-forming process, systematical know-how about why the LDR of a metal sheet is different, how working conditions influence qualities of a work-piece, and how the deformation takes place has been achieved when simulations are employed. All these results claim that the cup depth heavily weighs on the cup wall thinning rate, and a satisfied complex part can be achieved when the contacting time between the sheet and the female die is under our control well by a movable slider, which is fixed as the bottom of the female die.
文摘The numerical simulation on drawing process of automotive B-pillar was carried out on AutoForm software,and dangerous forming areas were discovered.The processing parameters,such as the layout of drawbeads,blank holding force and the shape of blank,were adjusted and optimized according to the simulation results.Results indicate that the quality defects can be forecast and removed,which improves the stability of forming process.The cost of design is decreased and the research cycle is shortened.It is proved that the drawing process and die design of B-pillar forming are feasible in actual production.
基金supported by the Fundamental Research Funds for the Central Universities of China under Grant No.A03007023801073
文摘Taking Ti-6Al-4V specimens into consideration, the coupled thermal-electrical finite element model has been developed in Abaqus/Explicit to simulate the heating process in Gleeble 3800 and to study the temperature history and distribution in the specimen. In order to verify the finite element (FE) results, thermal tests are carried out on Gleeble 3800 for a Ti-6Al-4V specimen with a slot to in the centre of the specimen. The effects of the specimen size, heating rate, and air convection on the temperature distribution over the specimen have been investigated. The conclusions can be drawn as: the temperature gradient of the specimen decreases as the specimen size, heating rate, and vacuuming decrease.
基金Project(2011CB706605)supported by the National Basic Research Program of ChinaProject(IRT13087)supported by the Innovative Research Team Development Program of Ministry of Education of ChinaProject(2012-86)supported by the Grant from the High-end Talent Leading Program of Hubei Province,China
文摘Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key forming conditions of cold HR of bearing steel-balls were detailedly described. Then, by taking steel-ball rolling elements of the B7008 C angular contact ball bearing as an example, a completed 3D elastic-plastic FE model of cold HR forming process was established under SIMUFACT software environment. Furthermore, the deformation characteristics in HR process were discovered, including the forming process, evolution and distribution laws of strain, stress and damage based on Lemaitre relative damage model. The results reveal that the central loosening and cavity defects in HR process may have a combined effect of large negative hydrostatic pressure(positive mean stress)caused by multi-dimensional tensile stresses, high level transverse tensile stress, and circular-alternating shear stress in cross section.
文摘The paper presents a mathematical model ofbrushless DC machine induced by permanent magnets. Its construction uses the classical model of permanent magnet synchronous machine and induced model of power inverter using the serraphil form. The results of the computer simulation were presented for such states: startup, work under active constant load and the behavior of the machine in terms of exponential and stepping change of the power inverter's control angle.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10272044,10672056).
文摘The eclipsed form arrangement and march-past method of water intake-outlet arrangements in power plants were researched by 3-D numerical simulation based on the k-e two-equation turbulence model. Firstly, the flowing characteristics of eclipsed form arrangement were analyzed and the effects of some main factors on inlet temperature were investigated. The simulation results are basically in agreement with those of the previous experiments. Then, by comparing the inlet temperature of the above two intake-outlet methods, the superiority and its existent conditions of the eclipsed form were examined.
文摘Sheet metal forming is one of the most preferred manufacturing processes in automotive and aerospace industries. However, due to increase in fuel prices and more stringent environmental regulation, these industries are facing many challenges to meet the criteria. Due to this, many efforts in design and manufacturing were considered and presented.Those efforts were implementing lighter-weight materials like aluminum and magnesium(but they have higher elasticity as compared to steel) and implementing higher-strength steel with lower thickness. The main challenge found in both cases is springback after deformation. Springback is the elastic recovery after the part is unloaded. In this paper, the 3D channels with large length were deformed numerically and springback at different section was predicted. For this purpose, tailorwelded blank was considered. The geometric change along the long axis was also discussed. In addition, the effect of flange springback on wall springback was also analyzed. It was found that different section produced different springback and greater influence of flange springback. To validate the numerical simulation approach, the experiments on one case were performed and compared.