The interaction between captopril, an inhibitor of angiotensin converting enzyme and human serum albumin, a principal plasma protein in the liver has been investigated in vitro under a simulated physiological conditio...The interaction between captopril, an inhibitor of angiotensin converting enzyme and human serum albumin, a principal plasma protein in the liver has been investigated in vitro under a simulated physiological condition by UV-vis spectrophotometry and fluorescence spectrometry. The intrinsic fluorescence intensity of human serum albumin was strongly quenched by captopril. The binding constants and the number of binding sites can be calculated from the data obtained from fluorescence quenching experiments. The negative value of ΔG0 reveals that the binding process is a spontaneous process. According to the van’t Hoff equation, the standard enthalpy change (ΔH0) and standard entropy change (ΔS0) for the reaction were calculated to be 35.98 KJ●mol-1 and 221.25 J●mol-1 K. It indicated that the hydrophobic interactions play a main role in the binding of captopril to human serum albumin. In addition, the distance between captopril (acceptor) and tryptophan residues of human serum albumin (donor) was estimated to be 1.05 nm according to the F?rster’s resonance energy transfer theory. The results obtained herein will be of biological significance in pharmacology and clinical medicine.展开更多
There is a remarkable characteristic of photosynthesis in nature, that is, the energy transfer efficiency is close to 100%. Recently, due to the rapid progress made in the experimental techniques, quantum coherent eff...There is a remarkable characteristic of photosynthesis in nature, that is, the energy transfer efficiency is close to 100%. Recently, due to the rapid progress made in the experimental techniques, quantum coherent effects have been experimentally demonstrated. Traditionally, the incoherent theories are capable of calculating the energy transfer efficiency, e.g.,(generalized) F?rster theory and modified Redfield theory(MRT). However, in order to describe the quantum coherent effects in photosynthesis, one has to exploit coherent theories, such as hierarchical equation of motion(HEOM), quantum path integral, coherent modified Redfield theory(CMRT), small-polaron quantum master equation, and general Bloch-Redfield theory in addition to the Redfield theory. Here, we summarize the main points of the above approaches,which might be beneficial to the quantum simulation of quantum dynamics of exciton energy transfer(EET) in natural photosynthesis, and shed light on the design of artificial light-harvesting devices.展开更多
基金the National Key Technology R&D Program of China(No.2008BAJ08B13)for financially supporting this work.
文摘The interaction between captopril, an inhibitor of angiotensin converting enzyme and human serum albumin, a principal plasma protein in the liver has been investigated in vitro under a simulated physiological condition by UV-vis spectrophotometry and fluorescence spectrometry. The intrinsic fluorescence intensity of human serum albumin was strongly quenched by captopril. The binding constants and the number of binding sites can be calculated from the data obtained from fluorescence quenching experiments. The negative value of ΔG0 reveals that the binding process is a spontaneous process. According to the van’t Hoff equation, the standard enthalpy change (ΔH0) and standard entropy change (ΔS0) for the reaction were calculated to be 35.98 KJ●mol-1 and 221.25 J●mol-1 K. It indicated that the hydrophobic interactions play a main role in the binding of captopril to human serum albumin. In addition, the distance between captopril (acceptor) and tryptophan residues of human serum albumin (donor) was estimated to be 1.05 nm according to the F?rster’s resonance energy transfer theory. The results obtained herein will be of biological significance in pharmacology and clinical medicine.
基金supported by the National Basic Research Program of China (2017YFA0303704)the National Natural Science Foundation of China (61727801, 11774197, 11474181, 11674033, 11505007 and 11474026).
文摘There is a remarkable characteristic of photosynthesis in nature, that is, the energy transfer efficiency is close to 100%. Recently, due to the rapid progress made in the experimental techniques, quantum coherent effects have been experimentally demonstrated. Traditionally, the incoherent theories are capable of calculating the energy transfer efficiency, e.g.,(generalized) F?rster theory and modified Redfield theory(MRT). However, in order to describe the quantum coherent effects in photosynthesis, one has to exploit coherent theories, such as hierarchical equation of motion(HEOM), quantum path integral, coherent modified Redfield theory(CMRT), small-polaron quantum master equation, and general Bloch-Redfield theory in addition to the Redfield theory. Here, we summarize the main points of the above approaches,which might be beneficial to the quantum simulation of quantum dynamics of exciton energy transfer(EET) in natural photosynthesis, and shed light on the design of artificial light-harvesting devices.