In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste...In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.展开更多
A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experiment...A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experimental data. The extraction strategy is straightforward and can be easily implemented as a CAD tool to model spiral inductors. The resulting circuit models will be very useful for RF circuit designers.展开更多
Seed moisture at harvest is a critical trait affecting maize quality and mechanized production,and is directly determined by the dehydration process after physiological maturity.However,the dynamic nature of seed dehy...Seed moisture at harvest is a critical trait affecting maize quality and mechanized production,and is directly determined by the dehydration process after physiological maturity.However,the dynamic nature of seed dehydration leads to inaccurate evaluation of the dehydration process by conventional determination methods.Seed dry weight and fresh weight were recorded at 14 time points after pollination in a recombinant inbred line(RIL)population derived from two inbred lines with contrasting seed dehydration dynamics.The dehydration curves of RILs were determined by fitting trajectories of dry weight accumulation and dry weight/fresh weight ratio change based on a logistic model,allowing the estimation of eight characteristic parameters that can be used to describe dehydration features.Quantitative trait locus(QTL)mapping,taking these parameters as traits,was performed using multiple methods.Single-trait QTL mapping revealed 76 QTL associated with dehydration characteristic parameters,of which the phenotypic variation explained(PVE)was 1.03%to 15.24%.Multipleenvironment QTL analysis revealed 21 related QTL with PVE ranging from 4.23%to 11.83%.Multiple-trait QTL analysis revealed 58 QTL,including 51 pleiotropic QTL.Combining these mapping results revealed 12 co-located QTL and the dehydration process of RILs was divided into three patterns with clear differences in dehydration features.These results not only deepen general understanding of the genetic characteristics of seed dehydration but also suggest that this approach can efficiently identify associated genetic loci in maize.展开更多
To investigate the growth conditions of white-rot fungus and simulate its metabolism kinetic models, the rules how the factors such as biomass, culture fluid, pH value, glucose consumption and exopolysaccharides gener...To investigate the growth conditions of white-rot fungus and simulate its metabolism kinetic models, the rules how the factors such as biomass, culture fluid, pH value, glucose consumption and exopolysaccharides generation, etc., changed during the batch culture process of white-rot fungi by using an air-lift fermenter, as well as metabolic kinetics of white-rot fungi were studied. Based on Logistic equation, Luedeking-Piret equation and experimental data, the correlation model parameters of mycelia biomass, glucose consumption and exopolysaccharide generation were obtained and found to be change with time in metabolism process. Detailedly, μm=0.071 8 h-1,α= 0.831 8 g/(g·h), β= 0.002 g/(g·h), b1=0.016 3 g/(g·h) and b2=3.023 3 g/(g·h). Hence the mycelial growth kinetic model, exopolysaccharide generation kinetic model and substrate consumption kinetic model which describe fermentation process of white-rot fungi were established. Meanwhile, the experimental data were verified by this model, and a good fitting result with an average relative error less than 10% between the data obtained from experiments and the model was yielded. The results show that these models can predict the growth and metabolic rules of white-rot fungus, the fermentation process of exopolysaccharides and the kinetic mechanism of white-rot fungus accurately.展开更多
文摘In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.
文摘A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experimental data. The extraction strategy is straightforward and can be easily implemented as a CAD tool to model spiral inductors. The resulting circuit models will be very useful for RF circuit designers.
基金the National Key Research and Development Program of China(2016YFD0100303)the National High Technology Research and Development Program of China(2014AA10A601-5)+4 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,the National Natural Science Foundation of China(91535103,31371632,31200943)the Natural Science Foundation of Jiangsu Province(BK20150010)the Scientific and Technological Project of Jiangsu Province,China(BE2018325)the Innovative Research Team of Ministry of Agriculturethe Qing Lan Project of Jiangsu Province.
文摘Seed moisture at harvest is a critical trait affecting maize quality and mechanized production,and is directly determined by the dehydration process after physiological maturity.However,the dynamic nature of seed dehydration leads to inaccurate evaluation of the dehydration process by conventional determination methods.Seed dry weight and fresh weight were recorded at 14 time points after pollination in a recombinant inbred line(RIL)population derived from two inbred lines with contrasting seed dehydration dynamics.The dehydration curves of RILs were determined by fitting trajectories of dry weight accumulation and dry weight/fresh weight ratio change based on a logistic model,allowing the estimation of eight characteristic parameters that can be used to describe dehydration features.Quantitative trait locus(QTL)mapping,taking these parameters as traits,was performed using multiple methods.Single-trait QTL mapping revealed 76 QTL associated with dehydration characteristic parameters,of which the phenotypic variation explained(PVE)was 1.03%to 15.24%.Multipleenvironment QTL analysis revealed 21 related QTL with PVE ranging from 4.23%to 11.83%.Multiple-trait QTL analysis revealed 58 QTL,including 51 pleiotropic QTL.Combining these mapping results revealed 12 co-located QTL and the dehydration process of RILs was divided into three patterns with clear differences in dehydration features.These results not only deepen general understanding of the genetic characteristics of seed dehydration but also suggest that this approach can efficiently identify associated genetic loci in maize.
基金Supported by National Natural Sciences Foundation of China(40373044)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(05KJD610209)~~
文摘To investigate the growth conditions of white-rot fungus and simulate its metabolism kinetic models, the rules how the factors such as biomass, culture fluid, pH value, glucose consumption and exopolysaccharides generation, etc., changed during the batch culture process of white-rot fungi by using an air-lift fermenter, as well as metabolic kinetics of white-rot fungi were studied. Based on Logistic equation, Luedeking-Piret equation and experimental data, the correlation model parameters of mycelia biomass, glucose consumption and exopolysaccharide generation were obtained and found to be change with time in metabolism process. Detailedly, μm=0.071 8 h-1,α= 0.831 8 g/(g·h), β= 0.002 g/(g·h), b1=0.016 3 g/(g·h) and b2=3.023 3 g/(g·h). Hence the mycelial growth kinetic model, exopolysaccharide generation kinetic model and substrate consumption kinetic model which describe fermentation process of white-rot fungi were established. Meanwhile, the experimental data were verified by this model, and a good fitting result with an average relative error less than 10% between the data obtained from experiments and the model was yielded. The results show that these models can predict the growth and metabolic rules of white-rot fungus, the fermentation process of exopolysaccharides and the kinetic mechanism of white-rot fungus accurately.