According to the time series data of Enhanced Vegetation Index (EVI) in Four-Lake Area of Jianghan Plain during the period 2001-2007, we use Harmonic Analysis of Time Series (HANTS) to conduct cloud removing processin...According to the time series data of Enhanced Vegetation Index (EVI) in Four-Lake Area of Jianghan Plain during the period 2001-2007, we use Harmonic Analysis of Time Series (HANTS) to conduct cloud removing processing, and calculate the sum of square N of time series value of each pixel. The pixels with N>0.25 are classified as vegetation coverage area; the pixels with N<0.25 are classified as non-vegetation coverage area. As to vegetation coverage area, we use the second-order difference method to judge the frequency of peak value of EVI time series data. Within one year, the vegetation coverage area with peak value happening 1 time is woodland and grassland; the vegetation coverage area with peak value happening 2 times is arable land; the vegetation coverage area with peak value happening 3 times or more is vegetable land. Supervised classification method is used to identify cities, towns, water area in non-vegetation coverage area and woodland, grassland in vegetation coverage area. We draw the land cover classification diagram of Four-Lake Area in the period 2001-2007. In comparison with the land cover classification based on multitemporal ETM data in 2001, the difference of area of arable land is within 10%. Using MODIS-EVI data, we can rapidly and efficiently conduct land cover classification with low cost. The dynamic analysis results indicate that the area of arable land is in the process of declining, while the area of other cover types shows an increasing trend.展开更多
Marine strata in the Jianghan Plain area are widely distributed with a total depth of more than 8,000 m from the Upper Sinian to the Middle Triassic. Six reservoir caprock units, named Z-C2, C2-O, S, D--C, P and T1, c...Marine strata in the Jianghan Plain area are widely distributed with a total depth of more than 8,000 m from the Upper Sinian to the Middle Triassic. Six reservoir caprock units, named Z-C2, C2-O, S, D--C, P and T1, can be identified with each epoch. The geology, stratigraphy, drilling, oil testing and other basic data as well as the measured inclusion and strontium isotope data in the study area are used in the analysis of the formation and evolution process of marine petroliferous reservoirs in the Jianghan Plain area. This study aims to provide a scientific basis for the further exploration of hydrocarbons in the Jianghan Plain and reduce the risks by analyzing the key factors for hydrocarbon accumulation in the marine strata. Our findings show that in the Lower Palaeozoic hydrocarbon reservoir, oil/gas migration and accumulation chiefly occurred in the early period of the Early Yanshanian, and the hydrocarbon reservoir was destroyed in the middle-late period of the Early Yanshanian. In the Lower Triassic-Carboniferous hydrocarbon reservoir, oil/gas migration and accumulation chiefly occurred in the Early Yanshanian, and the hydrocarbon reservoir suffered destruction from the Late Yanshanian to the Early Himalayanian. The preservation conditions of the marine strata in the Jianghan Plain area have been improved since the Late Himalayanian. However, because all source beds have missed the oil/gas generation fastigium and lost the capacity to generate secondary hydrocarbon, no reaccumulation of hydrocarbons can be detected in the study area's marine strata. No industrially exploitable oil/gas reservoir has been discovered in the marine strata of Jianghan Plain area since exploration began in 1958. This study confirms that petroliferous reservoirs in the marine strata have been completely destroyed, and that poor preservation conditions are the primary factor leading to unsuccessful hydrocarbon exploration. It is safely concluded that hydrocarbon exploration in the marine strata of the study area is quite risky.展开更多
选择以干冷气候为主的兰州和温暖湿润的江汉平原作为研究区域,结合其他多种指标和研究区的岩性特征,对有机碳同位素(δ13Corg)的古气候指示意义进行了初步探讨.结果表明,在兰州地区,δ13Corg值波动反映C3/C4植物比例的改变,指示温度变化...选择以干冷气候为主的兰州和温暖湿润的江汉平原作为研究区域,结合其他多种指标和研究区的岩性特征,对有机碳同位素(δ13Corg)的古气候指示意义进行了初步探讨.结果表明,在兰州地区,δ13Corg值波动反映C3/C4植物比例的改变,指示温度变化.δ13Corg值偏正时,表明C4植物含量较大,反映温度较高,而δ13Corg值偏负时,表明气候较冷;江汉平原δ13Corg值主要反映降水信息,δ13Corg值偏负时指示相对暖湿气候,δ13Corg值偏正反映气候偏干.δ13Corg等指标同时还揭示了末次盛冰期以来两地古气候类同特征:即12.0 ka BP之前气候相对偏干;在全新世晚期,气候波动中转暖.不同之处表现为:约在12.0~10.0 ka BP,当兰州气候还很干冷时,江汉平原已进入暖湿的冰后期;而在全新世早中期,当兰州气候转为暖湿时,江汉平原气候则表现为略偏干.展开更多
基金Supported by National Natural Science Foundation of China(40971113)Innovative Group Project of Natural Science Foundation of Hubei Province (2006ABC013)
文摘According to the time series data of Enhanced Vegetation Index (EVI) in Four-Lake Area of Jianghan Plain during the period 2001-2007, we use Harmonic Analysis of Time Series (HANTS) to conduct cloud removing processing, and calculate the sum of square N of time series value of each pixel. The pixels with N>0.25 are classified as vegetation coverage area; the pixels with N<0.25 are classified as non-vegetation coverage area. As to vegetation coverage area, we use the second-order difference method to judge the frequency of peak value of EVI time series data. Within one year, the vegetation coverage area with peak value happening 1 time is woodland and grassland; the vegetation coverage area with peak value happening 2 times is arable land; the vegetation coverage area with peak value happening 3 times or more is vegetable land. Supervised classification method is used to identify cities, towns, water area in non-vegetation coverage area and woodland, grassland in vegetation coverage area. We draw the land cover classification diagram of Four-Lake Area in the period 2001-2007. In comparison with the land cover classification based on multitemporal ETM data in 2001, the difference of area of arable land is within 10%. Using MODIS-EVI data, we can rapidly and efficiently conduct land cover classification with low cost. The dynamic analysis results indicate that the area of arable land is in the process of declining, while the area of other cover types shows an increasing trend.
基金the subsidization of a Major Project of Chinese National Programs for Fundamental Research and Development (973 Program, No. 2012CB214805)supported by the Chinese National Natural Science Foundation (No. 41372141)
文摘Marine strata in the Jianghan Plain area are widely distributed with a total depth of more than 8,000 m from the Upper Sinian to the Middle Triassic. Six reservoir caprock units, named Z-C2, C2-O, S, D--C, P and T1, can be identified with each epoch. The geology, stratigraphy, drilling, oil testing and other basic data as well as the measured inclusion and strontium isotope data in the study area are used in the analysis of the formation and evolution process of marine petroliferous reservoirs in the Jianghan Plain area. This study aims to provide a scientific basis for the further exploration of hydrocarbons in the Jianghan Plain and reduce the risks by analyzing the key factors for hydrocarbon accumulation in the marine strata. Our findings show that in the Lower Palaeozoic hydrocarbon reservoir, oil/gas migration and accumulation chiefly occurred in the early period of the Early Yanshanian, and the hydrocarbon reservoir was destroyed in the middle-late period of the Early Yanshanian. In the Lower Triassic-Carboniferous hydrocarbon reservoir, oil/gas migration and accumulation chiefly occurred in the Early Yanshanian, and the hydrocarbon reservoir suffered destruction from the Late Yanshanian to the Early Himalayanian. The preservation conditions of the marine strata in the Jianghan Plain area have been improved since the Late Himalayanian. However, because all source beds have missed the oil/gas generation fastigium and lost the capacity to generate secondary hydrocarbon, no reaccumulation of hydrocarbons can be detected in the study area's marine strata. No industrially exploitable oil/gas reservoir has been discovered in the marine strata of Jianghan Plain area since exploration began in 1958. This study confirms that petroliferous reservoirs in the marine strata have been completely destroyed, and that poor preservation conditions are the primary factor leading to unsuccessful hydrocarbon exploration. It is safely concluded that hydrocarbon exploration in the marine strata of the study area is quite risky.
文摘选择以干冷气候为主的兰州和温暖湿润的江汉平原作为研究区域,结合其他多种指标和研究区的岩性特征,对有机碳同位素(δ13Corg)的古气候指示意义进行了初步探讨.结果表明,在兰州地区,δ13Corg值波动反映C3/C4植物比例的改变,指示温度变化.δ13Corg值偏正时,表明C4植物含量较大,反映温度较高,而δ13Corg值偏负时,表明气候较冷;江汉平原δ13Corg值主要反映降水信息,δ13Corg值偏负时指示相对暖湿气候,δ13Corg值偏正反映气候偏干.δ13Corg等指标同时还揭示了末次盛冰期以来两地古气候类同特征:即12.0 ka BP之前气候相对偏干;在全新世晚期,气候波动中转暖.不同之处表现为:约在12.0~10.0 ka BP,当兰州气候还很干冷时,江汉平原已进入暖湿的冰后期;而在全新世早中期,当兰州气候转为暖湿时,江汉平原气候则表现为略偏干.