期刊文献+
共找到9,213篇文章
< 1 2 250 >
每页显示 20 50 100
Heat stress affects mammary metabolism by influencing the plasma flow to the glands
1
作者 Jia Zeng Diming Wang +3 位作者 Huizeng Sun Hongyun Liu Feng‑Qi Zhao Jianxin Liu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期1908-1917,共10页
Background Environmental heat stress(HS)can have detrimental effects on milk production by compromising the mammary function.Mammary plasma flow(MPF)plays a crucial role in nutrient supply and uptake in the mam-mary g... Background Environmental heat stress(HS)can have detrimental effects on milk production by compromising the mammary function.Mammary plasma flow(MPF)plays a crucial role in nutrient supply and uptake in the mam-mary gland.In this experiment,we investigated the physiological and metabolic changes in high-yielding cows exposed to different degrees of HS:no HS with thermal-humidity index(THI)below 68(No-HS),mild HS(Mild-HS,68≤THI≤79),and moderate HS(Mod-HS,79<THI≤88)in their natural environment.Our study focused on the changes in blood oxygen supply and mammary glucose uptake and utilization.Results Compared with No-HS,the MPF of dairy cows was greater(P<0.01)under Mild-HS,but was lower(P<0.01)in cows under Mod-HS.Oxygen supply and consumption exhibited similar changes to the MPF under different HS,with no difference in ratio of oxygen consumption to supply(P=0.46).The mammary arterio-vein differences in glucose concentration were lower(P<0.05)under Mild-and Mod-HS than under no HS.Glucose supply and flow were significantly increased(P<0.01)under Mild-HS but significantly decreased(P<0.01)under Mod-HS compared to No-HS.Glucose uptake(P<0.01)and clearance rates(P<0.01)were significantly reduced under Mod-HS compared to those under No-HS and Mild-HS.Under Mild-HS,there was a significant decrease(P<0.01)in the ratio of lac-tose yield to mammary glucose supply compared to that under No-HS and Mod-HS,with no difference(P=0.53)in the ratio of lactose yield to uptaken glucose among different HS situations.Conclusions Degrees of HS exert different influences on mammary metabolism,mainly by altering MPF in dairy cows.The output from this study may help us to develop strategies to mitigate the impact of different degrees of HS on milk production. 展开更多
关键词 Dairy cow heat stress Mammary metabolism Mammary plasma flow
下载PDF
Turbine Passage Secondary Flow Dynamics and Endwall Heat Transfer Under Different Inflow Turbulence
2
作者 Arjun K S Tide P S Biju N 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期51-62,共12页
This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Re... This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Reθ-γtransition model as well as using the high-resolution LES separately.The major secondary flow components,comprising the horseshoe,corner,and passage vortices are recognized and the impact on heat or mass transfer is investigated.The complicated behavior of turbine passage secondary flow generation and establishment are impacted by the perspective of boundary layer attributes and inflow turbulence.The passage vortex concerning the latest big leading-edge vane is generated by the enlargement of the circulation developed at the first instance adjacent to the pressure side becomes powerful and mixes with other vortex systems during its migration towards the suction side.The study conclusions reveal that substantial enhancements are attained on the endwall surface,for the entire spanwise blade extension on the pressure surface,and in the highly 3-D region close to the endwall on the suction surface.The forecasted suction surface thermal exchange depicts great conformity with the measurement values and precisely reproduces the enhanced thermal exchange owing to the development and lateral distribution of the secondary flows along the midspan of the blade passage downstream.The impacts of the different secondary flow structures on the endwall thermal exchange are described in depth. 展开更多
关键词 TURBINE VANE heat transfer ENDWALL TURBULENCE secondary flow
下载PDF
Impact of Cattaneo-Christov Heat Flux in the Nanofluid Flow over an Inclined Permeable Surface with Irreversibility Analysis
3
作者 Muhammad Ramzan Hina Gul 《Journal of Applied Mathematics and Physics》 2024年第4期1582-1595,共14页
This study discusses the magnetohydrodynamic nanofluid flow over an inclined permeable surface influenced by mixed convection, and Cattaeo-Christov heat flux. The heat transfer analysis is performed in the presence of... This study discusses the magnetohydrodynamic nanofluid flow over an inclined permeable surface influenced by mixed convection, and Cattaeo-Christov heat flux. The heat transfer analysis is performed in the presence of a heat source/sink and thermal stratification. To gauge the energy loss during the process, an irreversibility analysis is also performed. A numerical solution to the envisaged problem is obtained using the bvp4c package of MATLAB. Graphs are drawn to assess the consequences of the arising parameters against the associated profiles. The results show that an augmentation in the magnetic field and nanomaterial volume fraction results in an enhancement in the temperature profile. A strong magnetic field can significantly reduce the fluid velocity. The behavior of the Skin friction coefficient against the different estimates of emerging parameters is discussed. . 展开更多
关键词 Nanofluid flow Cattaneo-Christov heat Flux Permeable Surface Mixed Convection heat Source/Sink Thermal Stratification
下载PDF
Numerical modeling and parametric sensitivity analysis of heat transfer and two-phase oil and water flow characteristics in horizontal and inclined flowlines using OpenFOAM 被引量:1
4
作者 Nsidibe Sunday Abdelhakim Settar +1 位作者 Khaled Chetehouna Nicolas Gascoin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1183-1199,共17页
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ... Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation. 展开更多
关键词 flow assurance flow pattern heat transfer flowlines Two-phase flow Global sensitivity analysis
下载PDF
Analysis of periodic pulsating nanofluid flow and heat transfer through a parallel-plate channel in the presence of magnetic field 被引量:1
5
作者 Qingkai ZHAO Longbin TAO Hang XU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第11期1957-1972,共16页
In this paper,we focus on the two-dimensional pulsating nanofluid flow through a parallel-plate channel in the presence of a magnetic field.The pulsating flow is produced by an applied pressure gradient that fluctuate... In this paper,we focus on the two-dimensional pulsating nanofluid flow through a parallel-plate channel in the presence of a magnetic field.The pulsating flow is produced by an applied pressure gradient that fluctuates with a small amplitude.A kind of proper transformation is used so that the governing equations describing the momentum and thermal energy are reduced to a set of non-dimensional equations.The analytical expressions of the pulsating velocity,temperature,and Nusselt number of nanofluids are obtained by the perturbation technique.In the present study,the effects of the Cu-H2O and Al_(2)O_(3)-H2O nanofluids on the flow and heat transfer in pulsating flow are compared and analyzed.The results show that the convective heat transfer effect of Cu-H2O nanofluids is better than that of Al_(2)O_(3)-H2O nanofluids.Also,the effects of the Hartmann number and pulsation amplitude on the velocity,temperature,and Nusselt number are examined and discussed in detail.The present work indicates that increasing the Hartmann number and pulsation amplitude can enhance the heat transfer of the pulsating flow.In addition,selecting an optimal pulsation frequency can maximize the convective heat transfer of the pulsating flow.Therefore,improved understanding of these fundamental mechanisms is conducive to the optimal design of thermal systems. 展开更多
关键词 NANOFLUID pulsating flow heat transfer applied magnetic field
下载PDF
Numerical and experimental study on the falling film flow characteristics with the effect of co-current gas flow in hydrogen liquefaction process 被引量:1
6
作者 Chong-Zheng Sun Yu-Xing Li +2 位作者 Hui Han Xiao-Yi Geng Xiao Lu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1369-1384,共16页
Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ... Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow. 展开更多
关键词 Hydrogen liquefaction Spiral wound heat exchanger flow pattern transition Falling film flow
下载PDF
Effects of tube cross-sectional shapes on flow pattern, liquid film and heat transfer of n-pentane across tube bundles
7
作者 Xuejing He Zhenlin Li +1 位作者 Ji Wang Hai Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期16-25,共10页
The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes o... The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer. 展开更多
关键词 Tube shapes flow pattern Liquid film thickness heat transfer Two-phase flow
下载PDF
Effects of sawtooth heat pulses on edge flows and turbulence in a tokamak plasma
8
作者 赵开君 Yoshihiko NAGASHIMA +22 位作者 郭志彬 Patrick H DIAMOND 董家齐 严龙文 Kimitaka ITOH Sanae-I ITOH 李晓博 李继全 Akihide FUJISAWA Shigeru INAGAKI 程钧 许健强 Yusuke KOSUGA Makoto SASAKI 王正汹 张怀强 陈俞钱 曹小岗 余德良 刘仪 宋显明 夏凡 王硕 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第1期1-9,共9页
Enhancements of edge zonal flows,radial electric fields,and turbulence are observed in electron cyclotron resonance heating-heated plasmas(Zhao et al 2013 Nucl.Fusion 53083011).In this paper,the effects of sawtooth he... Enhancements of edge zonal flows,radial electric fields,and turbulence are observed in electron cyclotron resonance heating-heated plasmas(Zhao et al 2013 Nucl.Fusion 53083011).In this paper,the effects of sawtooth heat pulses on flows and turbulence are presented.These experiments are performed using multiple Langmuir probe arrays in the edge plasmas of the HL-2A tokamak.The edge zonal flows,radial electric fields,and turbulence are all enhanced by sawteeth.Propagation of the zonal flow and turbulence intensities is also observed.The delay time of the maximal intensity of the electric fields,zonal flows,and turbulence with respect to the sawtooth crashes is estimated as~1 ms and comparable to that of the sawtooth-triggered intermediate phases.Not only the zonal flows but also the radial electric fields lag behind the turbulence.Furthermore,the intensities of both the zonal flows and electric fields nearly linearly increase/decrease with the increase/decrease of the turbulence intensity.A double-source predator-prey model analysis suggests that a relatively strong turbulence source may contribute to the dominant zonal flow formation during sawtooth cycles. 展开更多
关键词 TOKAMAK Langmuir probe arrays edge flows and turbulence sawtooth heat pulses
下载PDF
Determination of Curie Point Depth and Heat Flow Using Airborne Magnetic Data over the Kom-Ombo and Nuqra Basins, Southern Eastern Desert, Egypt
9
作者 Ahmed Tarshan Asmaa A. Azzazy +1 位作者 Ali M. Mostafa Ahmed A. Elhusseiny 《Geomaterials》 2023年第4期91-108,共18页
The Kom-Ombo and Nuqra basins in southern Egypt have recently been discovered as potential hydrocarbon basins. The lack of information about the geothermal gradient and heat flow in the study area gives importance to ... The Kom-Ombo and Nuqra basins in southern Egypt have recently been discovered as potential hydrocarbon basins. The lack of information about the geothermal gradient and heat flow in the study area gives importance to studying the heat flow and the geothermal gradient. Several studies were carried out to investigate the geothermal analyses of the northwestern desert, as well as the west and east of the Nile River, using density, compressive wave velocity, and bottom hole temperature (BHT) measured from deep oil wells. This research relies on spectral analysis of airborne magnetic survey data in the Kom-Ombo and Nuqra basins in order to estimate the geothermal gradient based on calculating the depth to the bottom of the magnetic source that caused the occurrence of these magnetic deviations. This depth is equal to the CPD, at which the material loses its magnetic polarisation. This method is fast and gives satisfactory results. Usually, it can be applied as a reconnaissance technique for geothermal exploration targets due to the abundance of magnetic data. The depth of the top (Z<sub>t</sub>) and centroid (Z<sub>0</sub>) of the magnetic source bodies was calculated for the 32 windows representing the study area using spectral analysis of airborne magnetic data. The curie-isotherm depth, geothermal gradient, and heat flow maps were constructed for the study area. The results showed that the CPD in the study area ranges from 13 km to 20 km. The heat flow map values range from 69 to 109 mW/m<sup>2</sup>, with an average of about 80 mW/m<sup>2</sup>. The calculated heat flow values in the assigned areas (A, B, C, and D) of the study area are considered to have high heat flow values, reaching 109 mW/m<sup>2</sup>. On the other hand, the heat flow values in the other parts range from 70 to 85 mW/m<sup>2</sup>. Since heat flow plays an essential role in the maturation of organic matter, it is recommended that hydrocarbon accumulations be located in places with high heat flow values, while deep drilling of hydrocarbon wells is recommended in places with low to moderate heat flow values. 展开更多
关键词 Curie Point heat flow Airborne Magnetic Data Nuqra Basin Kom-Ombo Basin Eastern Desert
下载PDF
Research on shell-side heat and mass transfer with multi-component in LNG spiral-wound heat exchanger under sloshing conditions
10
作者 Xue-Ping Du Guang-Lei Yu +3 位作者 Ya-Cheng Xu Zhi-Jie Chen Nai-Liang Li Huan-Guang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1333-1345,共13页
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud... The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions. 展开更多
关键词 Spiral-wound heat exchanger Sloshing conditions Two-phase flow MULTI-COMPONENT heat and mass transfer
下载PDF
HEAT KERNEL ON RICCI SHRINKERS(II)
11
作者 Yu LI Bing WANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1639-1695,共57页
This paper is the sequel to our study of heat kernel on Ricci shrinkers[29].In this paper,we improve many estimates in[29]and extend the recent progress of Bamler[2].In particular,we drop the compactness and curvature... This paper is the sequel to our study of heat kernel on Ricci shrinkers[29].In this paper,we improve many estimates in[29]and extend the recent progress of Bamler[2].In particular,we drop the compactness and curvature boundedness assumptions and show that the theory of F-convergence holds naturally on any Ricci flows induced by Ricci shrinkers. 展开更多
关键词 Ricci flow Ricci shrinker heat kernel
下载PDF
Effect of bipolar-plates design on corrosion,mass and heat transfer in proton-exchange membrane fuel cells and water electrolyzers:A review
12
作者 Jiuhong Zhang Xiejing Luo +2 位作者 Yingyu Ding Luqi Chang Chaofang Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1599-1616,共18页
Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)ar... Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science. 展开更多
关键词 bipolar-plates flow design mass and heat transfer CORROSION water electrolyzers fuel cells
下载PDF
Simulation and Analysis of Cascading Faults in Integrated Heat and Electricity Systems Considering Degradation Characteristics
13
作者 Hang Cui Hongbo Ren +3 位作者 Qiong Wu Hang Lv Qifen Li Weisheng Zhou 《Energy Engineering》 EI 2024年第3期581-601,共21页
Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading fau... Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method. 展开更多
关键词 Cascading fault degradation characteristics integrated heat and electricity system multi-energy flow
下载PDF
Operating Parameters of the District Heating Substation Cooperating With the Installation of Technological Air Conditioning With High Efficiency of Heat Recovery
14
作者 Żarski Kazimierz Kryża Mariusz 《Chinese Business Review》 2024年第1期1-12,共12页
The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchange... The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated. 展开更多
关键词 ventilation of operating theatre air conditioning flow control in heating circuit
下载PDF
基于Flowmaster的发动机滑油供油系统流量压力换热特性建模与仿真
15
作者 冷子昊 程荣辉 +2 位作者 郁丽 苏壮 李国权 《机械工程师》 2024年第2期112-116,共5页
为了分析滑油从滑油泵组流经燃滑油散热器、喷嘴至轴承腔内的流动换热特性,基于Flowmaster流体系统仿真平台,以发动机滑油供油系统为研究对象,通过各支点喷嘴模型建立及仿真计算,验证喷嘴设计符合性。根据燃滑油散热器结构特点,计算流... 为了分析滑油从滑油泵组流经燃滑油散热器、喷嘴至轴承腔内的流动换热特性,基于Flowmaster流体系统仿真平台,以发动机滑油供油系统为研究对象,通过各支点喷嘴模型建立及仿真计算,验证喷嘴设计符合性。根据燃滑油散热器结构特点,计算流阻和换热特性,建立仿真计算模型,验证散热器流阻特性及换热性能;建立滑油供油系统模型,仿真计算轴承腔、附件机匣、转接齿轮箱等处供油流量、供油压力及供油温度,分析评估系统流量压力换热特性,支撑滑油系统正向设计。 展开更多
关键词 滑油供油系统 燃滑油散热器 流量 压力 换热 flowmaster
下载PDF
Analysis of secondary flow in shell-side channel of trisection helix heat exchangers 被引量:3
16
作者 王伟晗 陈亚平 +1 位作者 操瑞兵 施明恒 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期426-430,共5页
The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid i... The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger. 展开更多
关键词 trisection helix heat exchangers secondary flow Dean vortices heat transfer enhancement flow field analysis
下载PDF
EXPERIMENTAL INVESTIGATION ON FLOW AND HEAT TRANSFER CHARACTERISTICS IN TENON JOINT GAP BETWEEN TURBINE BLADE AND DISK 被引量:2
17
作者 常海萍 黄太平 陈万兵 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期52-56,共5页
The now and heat transfer characteristics in tenon joint gap between turbine blade and disk have been investigated experimentally with a scale up model. The characteristics of flow and heat transfer in this speCial ga... The now and heat transfer characteristics in tenon joint gap between turbine blade and disk have been investigated experimentally with a scale up model. The characteristics of flow and heat transfer in this speCial gap passage have been analyzed. The results are useful for beat transfer analysis in turbine design. 展开更多
关键词 flow heat transfer non-circular tube transition multistate flow
下载PDF
Exploration of regional surface average heat flow from meteorological and geothermal series 被引量:1
18
作者 刘迁迁 魏东平 +1 位作者 孙振添 张晓惠 《Applied Geophysics》 SCIE CSCD 2013年第4期496-505,513,共11页
We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly... We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly distributed in China's Mainland. We first employ Fourier transformation to remove the influence of atmospheric temperature variations from the observation series, which are classified into the type of the steady-state temperature monotonously increasing with depth (type I) and other three types. Then we compare our results obtained from the data of type I, of which the values are thought to equal to those of the mean borehole heat flow, with those obtained from traditional heat flow observations mainly distributed in North China Craton. In computations of the SAHF at the observation stations, we deduce the thermal diffusivity and volumetric specific heat of the soil by employing harmonic solutions of the heat conduction equation for the same moisture group as the first step, and then we determine the SAHF using Fourier's law. Our results indicate that the SAHF derived from shallow earth geothermal data can reflect the heat flow field to a large extent. 展开更多
关键词 Meteorological and geothermal series Surface average heat flow heat flow Soil thermal diffusivity Soil volumetric specific heat
下载PDF
A new heat transfer correlation for flow boiling in helically coiled tubes 被引量:1
19
作者 冀翠莲 韩吉田 +2 位作者 刘晓鹏 邵莉 陈常念 《Journal of Southeast University(English Edition)》 EI CAS 2015年第3期380-383,共4页
Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of th... Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of the geometric and system parameters on heat transfer characteristics in helically coiled tubes are investigated by collecting large amounts of experimental data and analyzing the heat transfer mechanisms. The existing correlations are divided into two categories,and they are calculated with the experimental data.The Dn factor is introduced to take into account the effect of a complex geometrical structure on flow boiling heat transfer.A new correlation is developed for predicting the flow boiling heat transfer coefficients in the helically coiled tubes,which is validated by the experimental data of R134a flow boiling heat transfer in them;and the average relative error and root mean square error of the new correlation are calculated.The results show that the new correlation agrees well with the experimental data,indicating that the new correlation can be used for predicting flow boiling heat transfer characteristics in the helically coiled tubes. 展开更多
关键词 helically coiled tube flow boiling heat transfer coefficient correlation heat transfer
下载PDF
3D topographic correction of the BSR heat flow and detection of focused fluid flow
20
作者 何涛 李洪林 邹长春 《Applied Geophysics》 SCIE CSCD 2014年第2期197-206,254,共11页
The bottom-simulating reflector(BSR) is a seismic indicator of the bottom of a gas hydrate stability zone. Its depth can be used to calculate the seafloor surface heat flow. The calculated BSR heat flow variations i... The bottom-simulating reflector(BSR) is a seismic indicator of the bottom of a gas hydrate stability zone. Its depth can be used to calculate the seafloor surface heat flow. The calculated BSR heat flow variations include disturbances from two important factors:(1) seafloor topography, which focuses the heat flow over regions of concave topography and defocuses it over regions of convex topography, and(2) the focused warm fluid flow within the accretionary prism coming from depths deeper than BSR. The focused fluid flow can be detected if the contribution of the topography to the BSR heat flow is removed. However, the analytical equation cannot solve the topographic effect at complex seafloor regions. We prove that 3D finite element method can model the topographic effect on the regional background heat flow with high accuracy, which can then be used to correct the topographic effect and obtain the BSR heat flow under the condition of perfectly flat topography. By comparing the corrected BSR heat flow with the regional background heat flow, focused fluid flow regions can be detected that are originally too small and cannot be detected using present-day equipment. This method was successfully applied to the midslope region of northern Cascadia subducting margin. The results suggest that the Cucumber Ridge and its neighboring area are positive heat flow anomalies, about 10%–20% higher than the background heat flow after 3D topographic correction. Moreover, the seismic imaging associated the positive heat flow anomaly areas with seabed fracture–cavity systems. This suggests flow of warm gas-carrying fluids along these high-permeability pathways, which could result in higher gas hydrate concentrations. 展开更多
关键词 gas hydrate BSR 3D finite element heat flow fluid flow
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部