The variable selection of high dimensional nonparametric nonlinear systems aims to select the contributing variables or to eliminate the redundant variables.For a high dimensional nonparametric nonlinear system,howeve...The variable selection of high dimensional nonparametric nonlinear systems aims to select the contributing variables or to eliminate the redundant variables.For a high dimensional nonparametric nonlinear system,however,identifying whether a variable contributes or not is not easy.Therefore,based on the Fourier spectrum of densityweighted derivative,one novel variable selection approach is developed,which does not suffer from the dimensionality curse and improves the identification accuracy.Furthermore,a necessary and sufficient condition for testing a variable whether it contributes or not is provided.The proposed approach does not require strong assumptions on the distribution,such as elliptical distribution.The simulation study verifies the effectiveness of the novel variable selection algorithm.展开更多
Simulation for stochastic wind field is very important in analyzing dynamic responses of large complex structures due to strong wind.The typical simulation method is the spectrum representation method (SRM),but the SR...Simulation for stochastic wind field is very important in analyzing dynamic responses of large complex structures due to strong wind.The typical simulation method is the spectrum representation method (SRM),but the SRM has drawbacks of inferior precision in lower frequency and slow calculating speed.In view of this,the modified Fourier spectrum method (MFSM) is introduced into the simulation of stochastic wind field in this paper.In this method,phase information of wind velocity time history is determined by cross power spectral density (CPSD) between adjacent points,and the wind velocity time history with time and space correlation is generated by iterative modification for CPSD considering auto power spectral density (APSD).Simulation of the wind field for a long-span bridge is undertaken to verify the effectiveness of the MFSM.Simulation results of the SRM and the MFSM are compared.It can be concluded that the MFSM is more accurate and has higher calculation speed than the SRM.展开更多
In this paper,the Fourier spectrum-based strain energy damage detection method for beam-like structures is proposed based on the discrete Fourier transform.The classical strain energy damage detection method localizes...In this paper,the Fourier spectrum-based strain energy damage detection method for beam-like structures is proposed based on the discrete Fourier transform.The classical strain energy damage detection method localizes damage by the comparison of the strain energy between the intact and inspected structures.The evaluation of the 2nd-order derivative term in the strain energy plays a crucial part in the comparison.The classical methods are mostly based on a numerical derivative estimation for this term.The numerical derivative,however,introduces additional disturbances into damage indications.To address this problem,a discrete Fourier transform-based strain energy is proposed with the emphasis of enhancing the performance in noisy condition.The validations conducted on the simulated and experimental data show that the developed method is effective enough for composite beam damage detection in noisy environments.展开更多
It is important to predict the intensity distribution in focusing plane for designing the X-ray compound refractive lenses. On the basis of analyzing the structure of X-ray compound lenses and comparing it with Praunh...It is important to predict the intensity distribution in focusing plane for designing the X-ray compound refractive lenses. On the basis of analyzing the structure of X-ray compound lenses and comparing it with Praunhofer diffraction system, it is concluded that the X-ray focusing system can be regarded as a kind of Praunhofer diffraction system. Therefore, a method based on Fourier spectrum analysis is presented to predict the intensity distribution in the focusing plane for the X-ray lenses. A brief analysis on the relationship between the parameters of X-ray lenses and their focusing performance is also given in this paper.展开更多
In this paper, we use femtosecond laser pulse to scribe 304 stainless steel foil, detect the Fourier transform infrared spectrum of the sample before and after processing, confirm the "cold processing" and &...In this paper, we use femtosecond laser pulse to scribe 304 stainless steel foil, detect the Fourier transform infrared spectrum of the sample before and after processing, confirm the "cold processing" and "thermal processing" and their mutual conversion, and determine the "cold processing" parameter window. The ablation threshold and incubation coefficient of 304 stainless steel foil are calculated, and the effects of scanning speed and effective pulse number on the ablation threshold are analyzed. The ANSYS software is used to simulate the radial and axial temperature distributions of the surface on 304 stainless steel foil sample and the heat-affected zone with a femtosecond laser fluence of 10 J/cm2 and an effective number of pulses of 1 200 are obtained. In the aspect of spectral detection, the Fourier transform infrared spectra of the sample before and after processing are measured and two processing mechanisms of "cold processing" and "hot processing" are confirmed, which proves that we can achieve the conversion between "cold processing" and "hot processing" by changing the laser fluence and determine the "cold processing" laser fluence range.展开更多
The period-3 behaviors of 105 exons from 20 genes in human were studied by Fourier power spectrum. The results indicated that not all exons show the period-3 behavior. The exons were adjusted in order to make them acc...The period-3 behaviors of 105 exons from 20 genes in human were studied by Fourier power spectrum. The results indicated that not all exons show the period-3 behavior. The exons were adjusted in order to make them accord with the order of the protein translated, and we found that the period-3 character is relation to the length of exons and the bases distribution in the three codon position. Furthermore, as long as the exons with period-3 behavior accord with the order of protein translated, they would exhibit the synonymous codons usage preference, and the codons with g/c at the third position are used in higher frequency. The results are significant to the gene prediction and the research on the introns.展开更多
The quaternion Fourier transform plays a vital role in the representation of two-dimensional signals. This paper characterizes spectrum of quaternion-valued signals on the quaternion Fourier transform domain by the pa...The quaternion Fourier transform plays a vital role in the representation of two-dimensional signals. This paper characterizes spectrum of quaternion-valued signals on the quaternion Fourier transform domain by the partial derivative.展开更多
Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the s...Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the steady response and the transient response when the system behaves linearly, or (2) the intra-wave modulation mechanism embedded in one intrinsic mode function (IMF) component when the system behaves nonlinearly. The temporal variation of the instantaneous frequency of the IMF component is consistent with the system nonlinear behavior of yielding and unloading. As a thorough study of this fundamental structural dynamics problem, this article investigates the influence of the amplitude of the harmonic wave excitation on the Hilbert spectrum and the intrinsic oscillatory mode of the dynamic response of a bilinear SDOF system.展开更多
基金Project supported by the National Key Research and Development Program of China(No.2021YFB3400700)the National Natural Science Foundation of China(Nos.12422201,12072188,12121002,and 12372017)。
文摘The variable selection of high dimensional nonparametric nonlinear systems aims to select the contributing variables or to eliminate the redundant variables.For a high dimensional nonparametric nonlinear system,however,identifying whether a variable contributes or not is not easy.Therefore,based on the Fourier spectrum of densityweighted derivative,one novel variable selection approach is developed,which does not suffer from the dimensionality curse and improves the identification accuracy.Furthermore,a necessary and sufficient condition for testing a variable whether it contributes or not is provided.The proposed approach does not require strong assumptions on the distribution,such as elliptical distribution.The simulation study verifies the effectiveness of the novel variable selection algorithm.
基金Project supported by the National Natural Science Foundation of China (No.90915004)the Six Talents Peak in Jiangsu Province(No.2008178)the 333 High-Level Talent Training Project of Jiangsu Province,China
文摘Simulation for stochastic wind field is very important in analyzing dynamic responses of large complex structures due to strong wind.The typical simulation method is the spectrum representation method (SRM),but the SRM has drawbacks of inferior precision in lower frequency and slow calculating speed.In view of this,the modified Fourier spectrum method (MFSM) is introduced into the simulation of stochastic wind field in this paper.In this method,phase information of wind velocity time history is determined by cross power spectral density (CPSD) between adjacent points,and the wind velocity time history with time and space correlation is generated by iterative modification for CPSD considering auto power spectral density (APSD).Simulation of the wind field for a long-span bridge is undertaken to verify the effectiveness of the MFSM.Simulation results of the SRM and the MFSM are compared.It can be concluded that the MFSM is more accurate and has higher calculation speed than the SRM.
基金supported by the National Natural Science Foundation of China(Grant Nos.51405369&51421004)the National Key Basic Research Program of China(Grant No.2015CB057400)+1 种基金the National Natural Science Foundation of Shaanxi Province(Grant No.2016JQ5049)the Postdoctoral Science Foundation of Shaanxi Province
文摘In this paper,the Fourier spectrum-based strain energy damage detection method for beam-like structures is proposed based on the discrete Fourier transform.The classical strain energy damage detection method localizes damage by the comparison of the strain energy between the intact and inspected structures.The evaluation of the 2nd-order derivative term in the strain energy plays a crucial part in the comparison.The classical methods are mostly based on a numerical derivative estimation for this term.The numerical derivative,however,introduces additional disturbances into damage indications.To address this problem,a discrete Fourier transform-based strain energy is proposed with the emphasis of enhancing the performance in noisy condition.The validations conducted on the simulated and experimental data show that the developed method is effective enough for composite beam damage detection in noisy environments.
基金This work was performed with the support from the National Natural Science Foundation of China (No. 10174079) the fund for the qualified researchers in Zhejiang University of Technology, P. R. China.
文摘It is important to predict the intensity distribution in focusing plane for designing the X-ray compound refractive lenses. On the basis of analyzing the structure of X-ray compound lenses and comparing it with Praunhofer diffraction system, it is concluded that the X-ray focusing system can be regarded as a kind of Praunhofer diffraction system. Therefore, a method based on Fourier spectrum analysis is presented to predict the intensity distribution in the focusing plane for the X-ray lenses. A brief analysis on the relationship between the parameters of X-ray lenses and their focusing performance is also given in this paper.
基金supported by the National Natural Science Foundation of China (No.11574159)the Open Fund of the State Key Laboratory of High Field Laser Physics,China (Shanghai Institute of Optics and Fine Mechanics)the Special Research Foundation of the Central University of Nankai University (No.63191108)。
文摘In this paper, we use femtosecond laser pulse to scribe 304 stainless steel foil, detect the Fourier transform infrared spectrum of the sample before and after processing, confirm the "cold processing" and "thermal processing" and their mutual conversion, and determine the "cold processing" parameter window. The ablation threshold and incubation coefficient of 304 stainless steel foil are calculated, and the effects of scanning speed and effective pulse number on the ablation threshold are analyzed. The ANSYS software is used to simulate the radial and axial temperature distributions of the surface on 304 stainless steel foil sample and the heat-affected zone with a femtosecond laser fluence of 10 J/cm2 and an effective number of pulses of 1 200 are obtained. In the aspect of spectral detection, the Fourier transform infrared spectra of the sample before and after processing are measured and two processing mechanisms of "cold processing" and "hot processing" are confirmed, which proves that we can achieve the conversion between "cold processing" and "hot processing" by changing the laser fluence and determine the "cold processing" laser fluence range.
基金This work was supported by the National Natural Science Foundation of China(Grants 20475068)the Natural Science Foundation of Guangdong Province(Contact No.031577)the Opening Foundation of State Key Laboratory of Chem/Biosensing and Chemometrics of Hunan University(2003).
文摘The period-3 behaviors of 105 exons from 20 genes in human were studied by Fourier power spectrum. The results indicated that not all exons show the period-3 behavior. The exons were adjusted in order to make them accord with the order of the protein translated, and we found that the period-3 character is relation to the length of exons and the bases distribution in the three codon position. Furthermore, as long as the exons with period-3 behavior accord with the order of protein translated, they would exhibit the synonymous codons usage preference, and the codons with g/c at the third position are used in higher frequency. The results are significant to the gene prediction and the research on the introns.
文摘The quaternion Fourier transform plays a vital role in the representation of two-dimensional signals. This paper characterizes spectrum of quaternion-valued signals on the quaternion Fourier transform domain by the partial derivative.
基金National Natural Science Foundation of China Under Grant No.50278090
文摘Under harmonic wave excitation, the dynamic response of a bilinear SDOF system can be expressed by the Hilbert spectrum. The Hilbert spectrum can be formulated by (1) the inter-wave combination mechanism between the steady response and the transient response when the system behaves linearly, or (2) the intra-wave modulation mechanism embedded in one intrinsic mode function (IMF) component when the system behaves nonlinearly. The temporal variation of the instantaneous frequency of the IMF component is consistent with the system nonlinear behavior of yielding and unloading. As a thorough study of this fundamental structural dynamics problem, this article investigates the influence of the amplitude of the harmonic wave excitation on the Hilbert spectrum and the intrinsic oscillatory mode of the dynamic response of a bilinear SDOF system.