Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepf...Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.展开更多
In order to study the dynamic characteristics of a simply supported double-beam system under a moving mass,the system of fourth-order dynamic partial differential equations of a simply supported double-beam system was...In order to study the dynamic characteristics of a simply supported double-beam system under a moving mass,the system of fourth-order dynamic partial differential equations of a simply supported double-beam system was transformed into a system of second-order dynamic ordinary differential equations relative to time coordinates by performing the finite sin-Fourier Transform relative to space coordinates.And the analytical solution of the dynamic response of the simply supported double-beam system under a moving mass was obtained by solving the system of dynamic ordinary differential equations.The analytical method and ANSYS numerical method were used to calculate the dynamic responses of several simply supported double-beam systems under a moving mass at different speeds.The influences of inertial effect,mass movement speed,and Winkler-layer spring stiffness and damping on the dynamic responses of simply supported double-beam systems were analyzed.According to the study results,the analytical calculation results in this paper fit well with the ANSYS finite element numerical calculation results,demonstrating the rationality of the analytical method.The inertial effect has a significant influence on the dynamic response characteristics of the simply supported double-beam system.The simply supported double-beam system underwent several resonant speeds under a moving mass,and the Winkler-layer spring stiffness has a relatively significant effect on the vibration of the first beam.展开更多
Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology refe...Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).展开更多
Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employ...Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.展开更多
A rapid and sensitive method for analyzing trace b-blockers in complex biological samples,which involved magnetic solid-phase extraction(MSPE)coupled with Fourier transform ion cyclotron resonance mass spectrometry(FT...A rapid and sensitive method for analyzing trace b-blockers in complex biological samples,which involved magnetic solid-phase extraction(MSPE)coupled with Fourier transform ion cyclotron resonance mass spectrometry(FTICR-MS),was developed.Novel nanosilver-functionalized magnetic nanoparticles with an interlayer of poly(3,4-dihydroxyphenylalanine)(polyDOPA@Ag-MNPs)were synthesized and used as MSPE adsorbents to extract trace b-blockers from biological samples.After extraction,the analytes loaded on the polyDOPA@Ag-MNPs were desorbed using an organic solvent and analyzed by FTICR-MS.The method was rapid and sensitive,with a total detection procedure of less than 10 min as well as limits of detection and quantification in the ranges of 3.5-6.8 pg/mL and 11.7-22.8 pg/mL,respectively.The accuracy of the method was also desirable,with recoveries ranging from 80.9%to 91.0%following the detection of analytes in human blood samples.All the experimental results demonstrated that the developed MSPE-FTICR-MS method was suitable for the rapid and sensitive analysis of trace b-blockers in complex biological samples.展开更多
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti...Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.展开更多
Gas chromatography/mass spectrometry (GC/MS) can only analyze volatile molecular compounds, and it has limitations when applied to determine the complex components of crude oils and hydrocarbon source rocks. Based o...Gas chromatography/mass spectrometry (GC/MS) can only analyze volatile molecular compounds, and it has limitations when applied to determine the complex components of crude oils and hydrocarbon source rocks. Based on Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and GC/MS analyses, the molecular compositions of NSO compounds in extracts from the Permian Dalong Formation, Sichuan Basin and the Permian Lucaogou Formation, Junggar Basin in China were compared. Analyses of types of heteroatoms present (S~, $2, $3, OS, OS2, 02S, NS, and NOS compounds) suggest that marine shales from the Dalong Formation are mainly composed of carboxylic acids (02 com- pounds) with a high abundance of fatty acids, indicating a marine phytoplankton organic source. However, lacustrine shales from the Lucaogou Formation are dominated by pyrrolic compounds (N1 compounds) with abundant dibenzocar- bazole. It suggests that the organic source materials may be derived from lower aquatic organisms and lacustrine algae. Overall, FT-ICR-MS has potential for applications in analyses and determination of depositional environments and organic sources in petroleum geology.展开更多
The sequence analysis of peptides was performed by nano-electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry(Nano-ESI-FT-ICR-MSn) and several peptides were chosen as examples. W...The sequence analysis of peptides was performed by nano-electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry(Nano-ESI-FT-ICR-MSn) and several peptides were chosen as examples. With the aid of the collision induced dissociation(CID), FT-ICR provides not only precise mass/charge ratio, but also structure information of the selected peptides. The fragment ions were identified according to the observed molecular weights and peptide sequence was determined successfully. So Nano-ESI-FT-ICR-MSn is a useful tool for identification of the amino acid sequence of peptides with high confidence. Besides, a pathway for the dehydration of y ions without amino acids containing carboxylic acid under sustained off-resonance irradiation collision-induced dissociation(SORI-CID) condition was proposed.展开更多
Background:The majority of attenuated total reflection Fourier transform infrared(ATR FT-IR)investigations of cotton are focused on the fiber tissue for biological mechanisms and understanding of fiber development and...Background:The majority of attenuated total reflection Fourier transform infrared(ATR FT-IR)investigations of cotton are focused on the fiber tissue for biological mechanisms and understanding of fiber development and maturity,but rarely on other cotton biomass comp on ents.This work examined in detail the ATR FT-IR spectral features of various cott on tissues/organs at reproductive and maturation stages,an a lyzed and discussed their biological implications.Results:The ATR FT-IR spectra of these tissues/organs were an a lyzed and compared with the focus on the lower wavenumber fingerprinting range.Six outstanding FT-IR bands at 1730,1620,1525,1235,1050 and 895 cm^(-1) represented the major C=O stretching,protein Amide I,Amide II,the O-H/N-H deformation,the total C-O-C stretching and the β-glycosidic linkage in celluloses,respectively,and impacted differently between these organs with the two growth stages.Furthermore,the band intensity at 1620,1525,1235,and 1050 cm^(-1) were exclusively and significantly correlated to the levels of protein(Amide I bond),protein(Amide II bond),cellulose,and hemicellulose,respectively,whereas the band at 1730 cm^(-1) was negatively correlated with ash content.Conclusions:The resulting observations indicated the capability of ATR FT-IR spectroscopy for monitoring changes,transportation,and accumulation of the major chemical components in these tissues over the cotton growth period.In other words,this spectral technology could be an effective tool for physiological,biochemical,and morphological research related to cotton biology and development.展开更多
Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is diffic...Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is difficult to use a single type of time-frequency analysis method, which affects the feasibility of acoustic logging signal analysis. In order to solve these problems, in this paper, a fractional Fourier transform and smooth pseudo Wigner Ville distribution (SPWD) were combined and used to analyze array acoustic logging signals. The time-frequency distribution of signals with the variation of orders of fractional Fourier transform was obtained, and the characteristics of the time-frequency distribution of different reservoirs under different orders were summarized. Because of the rotational characteristics of the fractional Fourier transform, the rotation speed of the cross terms was faster than those of primary waves, shear waves, Stoneley waves, and pseudo Rayleigh waves. By choosing different orders for different reservoirs according to the actual circumstances, the cross terms were separated from the four kinds of waves. In this manner, we could extract reservoir information by studying the characteristics of partial waves. Actual logging data showed that the method outlined in this paper greatly weakened cross-term interference and enhanced the ability to identify partial wave signals.展开更多
Fourier transform infrared spectroscopy (FTIR) was used to detect the spectral difference among leaf tips from rice ( Oryza sativa L.) plants with different nitrogen fertilizer rates. The proposed spectral index,...Fourier transform infrared spectroscopy (FTIR) was used to detect the spectral difference among leaf tips from rice ( Oryza sativa L.) plants with different nitrogen fertilizer rates. The proposed spectral index, ( A 3400 - A 1653 )/( A 3400 + A 1653 ) ( A denotes absorption value at certain frequency (cm -1 )), was found to decline with the increase of nitrogen fertilizer rates and the results suggested that FTIR may be useful to diagnose nitrogen status in crops.展开更多
[Objective] To study the digital image compression technology in rice monitoring system. [Method] A digital image compression technology program based on the discrete Fourier transform was proposed, and simulation exp...[Objective] To study the digital image compression technology in rice monitoring system. [Method] A digital image compression technology program based on the discrete Fourier transform was proposed, and simulation experiments were carried out to compress the image at different compression ratios. [Result] When com- pression ratios were less than 30, the compression ratio, image entropy, average codeword length, coding efficiency and redundancy which reflected the quality of the coding, and the parameter PSNR which estimated the fidelity of the compressed im- age were all achieved good results that human eye could barely percept the differ- ence between the original image and decompressed image; and when the compres- sion ratios were more than 30, there was a certain distortion in the decompressed image. And when the compression ratio was 91.516 3, although the image had some distortion, the PSNR was still achieved to 21.528 2, and human eye could accept the decompressed image intuitively within the acceptable error range. [Conclusion] The results show that the proposed image compression program is a viable, effective, and better image compression technology which can satisfy the requirements of the crop monitoring system on image storage, transforming and transporting.展开更多
Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made u...Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made up of the vibrational absorption bands of protein,lipid and polysaccharide.There were minor differences in-cluding the spectral peak position, peak shape and the absorption intensity in the range of 1 800-1 300 cm-1. There were obvious differences among their second derivative spectra in the range of 1 800-1 300 cm-1. After the procedure of the Fourier self-deconvolution and curve fitting of health bean leaves and broad bean diseased leaves in the range of 1 700-1 500 cm-1, three sub-peaks were obtained at 1 550 cm-1 (protein amide Ⅱ band), 1 605 cm-1 (lignin) and 1 650 cm-1 (protein amide I band).The ratios of relative areas of the bands of amide Ⅱ, lignin, and amide I were 38.86%, 28.68% and 32.47% in the spectra of healthy leaves, respec-tively. It was distinguished from the diseased leaves (chocolate spot leaf: 15.42%, 42.98% and 41.61%, ring spot leaf:32.39%, 35.63% and 31.98%, rust leaf: 13.97%, 46.40% and 39.65%, yel owing leaf curl disease leaf: 24.01%,36.55% and 39.44%). For sub-peak area ratios (A1 563/A1 605, A1 650/A1 605 and A1 563/A1 654), those of four kinds of diseased leaves were smal er than that of healthy leaves, and there were also differences among four kinds of diseased leaves. The results proved that FTIR combining with curve fitting might be a potential y useful tool for detecting different kinds of broad bean diseases.展开更多
Let and denote respectively the functionswhere λ≥1, The author discusses the similarity transformation of the regularizing functionals of these functions and the similar property of their Fourier transformation.
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
基金supported by the National Nature Science Foundation of China(Grant Number:61962010).
文摘Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.
基金The research described in this paper was financially supported by the Fundamental Research Funds for the Central Universities of Central South University(2018zzts189)the National Natural Science Foundations of China(51778630).
文摘In order to study the dynamic characteristics of a simply supported double-beam system under a moving mass,the system of fourth-order dynamic partial differential equations of a simply supported double-beam system was transformed into a system of second-order dynamic ordinary differential equations relative to time coordinates by performing the finite sin-Fourier Transform relative to space coordinates.And the analytical solution of the dynamic response of the simply supported double-beam system under a moving mass was obtained by solving the system of dynamic ordinary differential equations.The analytical method and ANSYS numerical method were used to calculate the dynamic responses of several simply supported double-beam systems under a moving mass at different speeds.The influences of inertial effect,mass movement speed,and Winkler-layer spring stiffness and damping on the dynamic responses of simply supported double-beam systems were analyzed.According to the study results,the analytical calculation results in this paper fit well with the ANSYS finite element numerical calculation results,demonstrating the rationality of the analytical method.The inertial effect has a significant influence on the dynamic response characteristics of the simply supported double-beam system.The simply supported double-beam system underwent several resonant speeds under a moving mass,and the Winkler-layer spring stiffness has a relatively significant effect on the vibration of the first beam.
文摘Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).
基金supported by the National Natural Science Foundation of China(61801503).
文摘Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.
基金supported by the National Natural Science Foundation of China(Grant Nos.:21976168,22127810,and 22004113)Key Research and Development Program of Guangdong Province(Grant No.:2020B1111350002)+1 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.:2019A1515110420)GDAS0 Project of Science and Technology Development(Grant No.:2021GDASYL-20210103034).
文摘A rapid and sensitive method for analyzing trace b-blockers in complex biological samples,which involved magnetic solid-phase extraction(MSPE)coupled with Fourier transform ion cyclotron resonance mass spectrometry(FTICR-MS),was developed.Novel nanosilver-functionalized magnetic nanoparticles with an interlayer of poly(3,4-dihydroxyphenylalanine)(polyDOPA@Ag-MNPs)were synthesized and used as MSPE adsorbents to extract trace b-blockers from biological samples.After extraction,the analytes loaded on the polyDOPA@Ag-MNPs were desorbed using an organic solvent and analyzed by FTICR-MS.The method was rapid and sensitive,with a total detection procedure of less than 10 min as well as limits of detection and quantification in the ranges of 3.5-6.8 pg/mL and 11.7-22.8 pg/mL,respectively.The accuracy of the method was also desirable,with recoveries ranging from 80.9%to 91.0%following the detection of analytes in human blood samples.All the experimental results demonstrated that the developed MSPE-FTICR-MS method was suitable for the rapid and sensitive analysis of trace b-blockers in complex biological samples.
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
文摘Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.
基金supported by the National Natural Science Foundation of China (Grant No. 41672117)Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals (Project No. DMSM201413)Hubei Provincial Natural Science Foundation of China (Project No. 2017CFA027)
文摘Gas chromatography/mass spectrometry (GC/MS) can only analyze volatile molecular compounds, and it has limitations when applied to determine the complex components of crude oils and hydrocarbon source rocks. Based on Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and GC/MS analyses, the molecular compositions of NSO compounds in extracts from the Permian Dalong Formation, Sichuan Basin and the Permian Lucaogou Formation, Junggar Basin in China were compared. Analyses of types of heteroatoms present (S~, $2, $3, OS, OS2, 02S, NS, and NOS compounds) suggest that marine shales from the Dalong Formation are mainly composed of carboxylic acids (02 com- pounds) with a high abundance of fatty acids, indicating a marine phytoplankton organic source. However, lacustrine shales from the Lucaogou Formation are dominated by pyrrolic compounds (N1 compounds) with abundant dibenzocar- bazole. It suggests that the organic source materials may be derived from lower aquatic organisms and lacustrine algae. Overall, FT-ICR-MS has potential for applications in analyses and determination of depositional environments and organic sources in petroleum geology.
基金Supported by the National Natural Science Foundation of China(No.20675079)
文摘The sequence analysis of peptides was performed by nano-electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry(Nano-ESI-FT-ICR-MSn) and several peptides were chosen as examples. With the aid of the collision induced dissociation(CID), FT-ICR provides not only precise mass/charge ratio, but also structure information of the selected peptides. The fragment ions were identified according to the observed molecular weights and peptide sequence was determined successfully. So Nano-ESI-FT-ICR-MSn is a useful tool for identification of the amino acid sequence of peptides with high confidence. Besides, a pathway for the dehydration of y ions without amino acids containing carboxylic acid under sustained off-resonance irradiation collision-induced dissociation(SORI-CID) condition was proposed.
基金supported in part by the U.S. Department of Agriculture, Agricultural Research Service
文摘Background:The majority of attenuated total reflection Fourier transform infrared(ATR FT-IR)investigations of cotton are focused on the fiber tissue for biological mechanisms and understanding of fiber development and maturity,but rarely on other cotton biomass comp on ents.This work examined in detail the ATR FT-IR spectral features of various cott on tissues/organs at reproductive and maturation stages,an a lyzed and discussed their biological implications.Results:The ATR FT-IR spectra of these tissues/organs were an a lyzed and compared with the focus on the lower wavenumber fingerprinting range.Six outstanding FT-IR bands at 1730,1620,1525,1235,1050 and 895 cm^(-1) represented the major C=O stretching,protein Amide I,Amide II,the O-H/N-H deformation,the total C-O-C stretching and the β-glycosidic linkage in celluloses,respectively,and impacted differently between these organs with the two growth stages.Furthermore,the band intensity at 1620,1525,1235,and 1050 cm^(-1) were exclusively and significantly correlated to the levels of protein(Amide I bond),protein(Amide II bond),cellulose,and hemicellulose,respectively,whereas the band at 1730 cm^(-1) was negatively correlated with ash content.Conclusions:The resulting observations indicated the capability of ATR FT-IR spectroscopy for monitoring changes,transportation,and accumulation of the major chemical components in these tissues over the cotton growth period.In other words,this spectral technology could be an effective tool for physiological,biochemical,and morphological research related to cotton biology and development.
基金supported by National Natural Science Foundation of China(Grant No.40874059)
文摘Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is difficult to use a single type of time-frequency analysis method, which affects the feasibility of acoustic logging signal analysis. In order to solve these problems, in this paper, a fractional Fourier transform and smooth pseudo Wigner Ville distribution (SPWD) were combined and used to analyze array acoustic logging signals. The time-frequency distribution of signals with the variation of orders of fractional Fourier transform was obtained, and the characteristics of the time-frequency distribution of different reservoirs under different orders were summarized. Because of the rotational characteristics of the fractional Fourier transform, the rotation speed of the cross terms was faster than those of primary waves, shear waves, Stoneley waves, and pseudo Rayleigh waves. By choosing different orders for different reservoirs according to the actual circumstances, the cross terms were separated from the four kinds of waves. In this manner, we could extract reservoir information by studying the characteristics of partial waves. Actual logging data showed that the method outlined in this paper greatly weakened cross-term interference and enhanced the ability to identify partial wave signals.
文摘Fourier transform infrared spectroscopy (FTIR) was used to detect the spectral difference among leaf tips from rice ( Oryza sativa L.) plants with different nitrogen fertilizer rates. The proposed spectral index, ( A 3400 - A 1653 )/( A 3400 + A 1653 ) ( A denotes absorption value at certain frequency (cm -1 )), was found to decline with the increase of nitrogen fertilizer rates and the results suggested that FTIR may be useful to diagnose nitrogen status in crops.
基金Supported by the Natural Science Foundation of Shaanxi Province,China (2011JE012)the Special Research Fund of the Education Bureau of Shaanxi Province,China(2010JK464)~~
文摘[Objective] To study the digital image compression technology in rice monitoring system. [Method] A digital image compression technology program based on the discrete Fourier transform was proposed, and simulation experiments were carried out to compress the image at different compression ratios. [Result] When com- pression ratios were less than 30, the compression ratio, image entropy, average codeword length, coding efficiency and redundancy which reflected the quality of the coding, and the parameter PSNR which estimated the fidelity of the compressed im- age were all achieved good results that human eye could barely percept the differ- ence between the original image and decompressed image; and when the compres- sion ratios were more than 30, there was a certain distortion in the decompressed image. And when the compression ratio was 91.516 3, although the image had some distortion, the PSNR was still achieved to 21.528 2, and human eye could accept the decompressed image intuitively within the acceptable error range. [Conclusion] The results show that the proposed image compression program is a viable, effective, and better image compression technology which can satisfy the requirements of the crop monitoring system on image storage, transforming and transporting.
基金Supported by National Natural Science Foundation of China(30960179)Program for Innovative Research Team in Science and Technology in University of Yunnan Province~~
文摘Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made up of the vibrational absorption bands of protein,lipid and polysaccharide.There were minor differences in-cluding the spectral peak position, peak shape and the absorption intensity in the range of 1 800-1 300 cm-1. There were obvious differences among their second derivative spectra in the range of 1 800-1 300 cm-1. After the procedure of the Fourier self-deconvolution and curve fitting of health bean leaves and broad bean diseased leaves in the range of 1 700-1 500 cm-1, three sub-peaks were obtained at 1 550 cm-1 (protein amide Ⅱ band), 1 605 cm-1 (lignin) and 1 650 cm-1 (protein amide I band).The ratios of relative areas of the bands of amide Ⅱ, lignin, and amide I were 38.86%, 28.68% and 32.47% in the spectra of healthy leaves, respec-tively. It was distinguished from the diseased leaves (chocolate spot leaf: 15.42%, 42.98% and 41.61%, ring spot leaf:32.39%, 35.63% and 31.98%, rust leaf: 13.97%, 46.40% and 39.65%, yel owing leaf curl disease leaf: 24.01%,36.55% and 39.44%). For sub-peak area ratios (A1 563/A1 605, A1 650/A1 605 and A1 563/A1 654), those of four kinds of diseased leaves were smal er than that of healthy leaves, and there were also differences among four kinds of diseased leaves. The results proved that FTIR combining with curve fitting might be a potential y useful tool for detecting different kinds of broad bean diseases.
文摘Let and denote respectively the functionswhere λ≥1, The author discusses the similarity transformation of the regularizing functionals of these functions and the similar property of their Fourier transformation.