期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Refinement of Fourier Coefficients from the Stokes Deconvoluted Profile
1
作者 GangLIU ZhideLIANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第2期97-98,共2页
Computer-aided experimental technique was used to study the Stokes deconvolution of X-ray diffraction profile. Considerable difference can be found between the Fourier coefficients obtained from the deconvolutions of ... Computer-aided experimental technique was used to study the Stokes deconvolution of X-ray diffraction profile. Considerable difference can be found between the Fourier coefficients obtained from the deconvolutions of singlet and doublet experimental profiles. Nevertheless, the resultant physical profiles corresponding to singlet and doublet profiles are identical. An approach is proposed to refine the Fourier coefficients, and the refined Fourier coefficients coincide well with that obtained from the deconvolution of singlet experimental profile. 展开更多
关键词 X-ray diffraction fourier transforms fourier coefficients
下载PDF
STUDY ON FREQUENCY ESTIMATION BASED ON WEIGHTED LEAST SQUARE METHOD WITH THREE FOURIER COEFFICIENTS
2
作者 Ren Chunhui Fu Yusheng 《Journal of Electronics(China)》 2013年第5期430-435,共6页
In this paper,a sinusoidal signal frequency estimation algorithm is proposed by weighted least square method.Based on the idea of Provencher,three biggest Fourier coefficients in the maximum periodogram are considered... In this paper,a sinusoidal signal frequency estimation algorithm is proposed by weighted least square method.Based on the idea of Provencher,three biggest Fourier coefficients in the maximum periodogram are considered,the Fourier coefficients can be written as three equations about the amplitude,phase,and frequency,and the frequency is estimated by solving equations.Because of the error of measurement,weighted least square method is used to solve the frequency equation and get the signal frequency.It is shown that the proposed estimator can approach the Cramer-Rao Bound(CRB)with a low Signal-to-Noise Ratio(SNR)threshold and has a higher accuracy. 展开更多
关键词 Sinusoidal signal Frequency estimation fourier coefficients Weighted least square method
下载PDF
Order of Magnitude of Multiple Fourier Coefficients
3
作者 R.G.Vyas K.N.Darji 《Analysis in Theory and Applications》 2013年第1期27-36,共10页
The order of magnitude of multiple Fourier coefficients of complex valued functions of generalized bounded variations like (∧^1,.. .,∧^N)BV^(p) and r-BV, over [0,2π]^ N, are estimated.
关键词 Order of magnitude of multiple fourier coefficients function of (∧^1 .. . ∧^N)BV^(p) r-BV Lip(p α1 …αN).
下载PDF
The Cancellation of Fourier Coefficients of Cusp Forms over Different Sparse Sequences 被引量:4
4
作者 Hui Xue LAO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第10期1963-1972,共10页
Abstract Let λf(n) be the n-th normalized Fourier coefficient of a holomorphic Hecke eigenform f(z) ∈ Sk(F), In this paper, we established nontrivial estimates for ∑n≤x λf(n^i)λf(n^j),where 1≤ij≤4.
关键词 fourier coefficients cusp forms L-FUNCTION sparse sequence
原文传递
On the Third and Fourth Power Moments of Fourier Coefficients of Cusp Forms 被引量:2
5
作者 Cai Yingchun Department of Mathematics, Shandong Normal University, Jinan 250014, China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1997年第4期443-452,共10页
The asymptotic formulae for the third and fourth power moments of Fourier coefficients of cusp forms are proved in this paper.
关键词 Cusp form fourier coefficients The estimation of mean value Asymptotic formula
原文传递
Quadratic forms connected with Fourier coefficients of Maass cusp forms 被引量:1
6
作者 Liqun HU 《Frontiers of Mathematics in China》 SCIE CSCD 2015年第5期1101-1112,共12页
For the normalized Fourier coefficients of Maass cusp forms λ(n) and the normalized Fourier coefficients of holomorphic cusp forms a(n), we give the bound of
关键词 Circle method fourier coefficients of Maass cusp forms quadraticform exponential sum
原文传递
ON THE FOURIER-VILENKIN COEFFICIENTS
7
作者 Martin G.GRIGORYAN Stepan SARGSYAN 《Acta Mathematica Scientia》 SCIE CSCD 2017年第2期293-300,共8页
In this article, we prove the following statement that is true for both unbounded and bounded Vilenkin systems: for any ε∈ (0, 1), there exists a measurable set E C [0, 1) of measure bigger than 1 - s such that ... In this article, we prove the following statement that is true for both unbounded and bounded Vilenkin systems: for any ε∈ (0, 1), there exists a measurable set E C [0, 1) of measure bigger than 1 - s such that for any function f ∈ LI[0, 1), it is possible to find a function g ∈ L^1 [0, 1) coinciding with f on E and the absolute values of non zero Fourier coefficients of g with respect to the Vilenkin system are monotonically decreasing. 展开更多
关键词 Vilenkin system EXPANSIONS fourier coefficients
下载PDF
Sums of Fourier coefficients of cusp forms of level D twisted by exponential functions
8
作者 Huan LIU 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第3期655-673,共19页
Let g be a holomorphic or Maass Hecke newform of level D and nebentypus XD, and let ag(n) be its n-th Fourier coefficient. We consider the sum S1=∑ X〈n≤2x ag(n)e(an β) and prove that S1 has an asymptotic for... Let g be a holomorphic or Maass Hecke newform of level D and nebentypus XD, and let ag(n) be its n-th Fourier coefficient. We consider the sum S1=∑ X〈n≤2x ag(n)e(an β) and prove that S1 has an asymptotic formula when β = 1/2 and α is close to ±2 √q/D for positive integer q ≤ X/4and X sufficiently large. And when 0 〈β 〈 1 and α, β fail to meet the above condition, we obtain upper bounds of S1. We also consider the sum S2 = ∑n〉0 ag(n)e(an β) Ф(n/X) with Ф(x) ∈ C c ∞(0,+∞) and prove that S2 has better upper bounds than S1 at some special α and β. 展开更多
关键词 exponential sums cusp form fourier coefficients
原文传递
Resonance and rapid decay of exponential sums of Fourier coefficients of a Maass form for GL_m(Z) 被引量:2
9
作者 REN XiuMin YE YangBo 《Science China Mathematics》 SCIE CSCD 2015年第10期2105-2124,共20页
Let f be a full-level cusp form for GLm(Z) with Fourier coefficients Af(n1,..., nm-1). In this paper,an asymptotic expansion of Voronoi's summation formula for Af(n1,..., nm-1) is established. As applications of t... Let f be a full-level cusp form for GLm(Z) with Fourier coefficients Af(n1,..., nm-1). In this paper,an asymptotic expansion of Voronoi's summation formula for Af(n1,..., nm-1) is established. As applications of this formula, a smoothly weighted average of Af(n, 1,..., 1) against e(α|n|β) is proved to be rapidly decayed when 0 < β < 1/m. When β = 1/m and α equals or approaches ±mq1/mfor a positive integer q, this smooth average has a main term of the size of |Af(1,..., 1, q) + Af(1,..., 1,-q)|X1/(2m)+1/2, which is a manifestation of resonance of oscillation exhibited by the Fourier coefficients Af(n, 1,..., 1). Similar estimate is also proved for a sharp-cut sum. 展开更多
关键词 cusp form for GLm(Z) Voronoi’s summation formula fourier coefficient of cusp forms RESONANCE
原文传递
Fourier coefficients of Zygmund functions and analytic functions with quasiconformal deformation extensions 被引量:1
10
作者 SHEN YuLiang 《Science China Mathematics》 SCIE 2012年第3期607-624,共18页
An open problem is to characterize the Fourier coefficients of Zygmund functions.This problem was also explicitly suggested by Nag and later by Teo and Takhtajan-Teo in the course of study of the universal Teichmu... An open problem is to characterize the Fourier coefficients of Zygmund functions.This problem was also explicitly suggested by Nag and later by Teo and Takhtajan-Teo in the course of study of the universal Teichmu¨ller space.By a complex analysis approach,we give a characterization for the Fourier coefficients of a Zygmund function by a quadratic form.Some related topics are also discussed,including those analytic functions with quasiconformal deformation extensions. 展开更多
关键词 Zygmund function fourier coefficient quasiconformal deformation analytic function
原文传递
On the Distribution and Moments of the Fourier Coefficients of Cusp Forms
11
作者 Cai Yingchun (Department of Mathematics,Shandong Normal University,Jinan 250014,China) 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1997年第3期289-294,共6页
Two theorems about the distribution and moments of the Fourier coefficients of cusp forms are proved in this paper.
关键词 DISTRIBUTION MOMENT Cusp form fourier coefficient
原文传递
On the Fourth Power Moment of Fourier Coefficients of Cusp Form
12
作者 Jin Jiang LI Pan Wang WANG Min ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第6期1050-1058,共9页
Let a(n) be the Fourier coefficients of a holomorphic cusp form of weight κ = 2n ≥ 12 for the full modular group and A(x) =∑n≤xa(n).In this paper, we establish an asymptotic formula of tile fourth power mome... Let a(n) be the Fourier coefficients of a holomorphic cusp form of weight κ = 2n ≥ 12 for the full modular group and A(x) =∑n≤xa(n).In this paper, we establish an asymptotic formula of tile fourth power moment of A(x) and prove that ∫1^TA^4(x)dx=3/64κπ^4s4;2(a^~)T^2κ+O(T^2a-δ4+t) with δ4 = 1/8, which improves the previous result. 展开更多
关键词 Cusp form fourier coefficient mean value asymptotic formula
原文传递
Quadrature formulas for Fourier-Chebyshev coefficients
13
作者 杨士俊 《Journal of Zhejiang University Science》 CSCD 2002年第3期326-331,共6页
The aim of this work is to construct a new quadrature formula for Fourier Chebyshev coef ficients based on the divided differences of the integrand at points 1, 1 and the zeros of the n th Chebyshev polynomial o... The aim of this work is to construct a new quadrature formula for Fourier Chebyshev coef ficients based on the divided differences of the integrand at points 1, 1 and the zeros of the n th Chebyshev polynomial of the second kind. The interesting thing is that this quadrature rule is closely related to the well known Gauss Turn quadrature formula and similar to a recent result of Micchelli and Sharma, extending a particular case due to Micchelli and Rivlin. 展开更多
关键词 Divided differences QUADRATURE Chebyshev polynomials fourier Chebyshev coefficient
下载PDF
A Biproportional Construction Algorithm for Correctly Calculating Fourier Series of Aperiodic Non-Sinusoidal Signal
14
作者 Zicheng Li Mingwei Ren +1 位作者 Zhaoling Chen Guohai Liu 《Engineering(科研)》 2021年第10期503-525,共23页
<span style="font-family:Verdana;">The </span><span style="font-family:Verdana;">Fourier series</span><span style="font-family:Verdana;"> (FS)</span>&l... <span style="font-family:Verdana;">The </span><span style="font-family:Verdana;">Fourier series</span><span style="font-family:Verdana;"> (FS)</span><span style="font-family:Verdana;"> applies to </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">periodic non-sinusoidal function</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">satisfying </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">Dirichlet conditions, whereas </span><span style="font-family:Verdana;">the</span><span style="font-family:Verdana;"> being-processed function</span><span style="font-family:;" "=""> <img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /></span><span style="font-family:;" "=""></span><span style="font-family:;" "=""><span style="font-family:Verdana;"> in practical applications is usually an aperiodic non-sinusoidal signal. When </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" /><span style="font-family:Verdana;"> is aperiodic, its calculated </span></span><span style="font-family:Verdana;">FS</span><span style="font-family:Verdana;"> is not correct, </span><span style="font-family:Verdana;">which is </span><span style="font-family:Verdana;">still a challenging problem. To overcome the problem, </span><span style="font-family:Verdana;">we</span><span style="font-family:Verdana;"> derive a direct calculation algorithm, a constant iterati</span><span style="font-family:Verdana;">on </span><span style="font-family:Verdana;">algorithm, and an optimal iterati</span><span style="font-family:Verdana;">on </span><span style="font-family:Verdana;">algorithm. The direct calculation algorithm correctly calculate</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> its Fourier coefficients </span><span style="font-family:Verdana;">(FCs) </span><span style="font-family:;" "=""><span style="font-family:Verdana;">when </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span><span style="font-family:Verdana;"> is periodic</span></span><span style="font-family:Verdana;"> and </span><span style="font-family:Verdana;">satisf</span><span style="font-family:Verdana;">ies</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">Dirichlet conditions</span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">B</span><span style="font-family:Verdana;">oth the constant iterati</span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> algorithm and the optimal</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">iterati</span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> algorithm provide </span><span style="font-family:Verdana;">an</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">idea</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> of</span><span style="color:red;"> </span><span style="font-family:Verdana;">determining </span></span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">states of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span></span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> From the </span><span style="font-family:Verdana;">idea</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">we obtain </span><span style="font-family:Verdana;">an algorithm for determining </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">states of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span><span style="font-family:Verdana;"> based on the optimal iterati</span></span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> algorithm. In the algorithm, </span><span style="font-family:Verdana;">the</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">variable</span><span style="font-family:Verdana;"> iterati</span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> step </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> introduced</span><span style="font-family:Verdana;">;</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">t</span><span style="font-family:Verdana;">hus</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">we present </span><span style="font-family:Verdana;">an algorithm for determining </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">states of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span><span style="font-family:Verdana;"> based on the </span></span><span style="font-family:Verdana;">variable</span><span style="font-family:Verdana;"> iterati</span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> step. </span><span style="font-family:Verdana;">The presented</span><span style="font-family:Verdana;"> algorithm accurately determine</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">states of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span></span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">On the basis of the</span><span style="font-family:Verdana;">se</span><span style="font-family:Verdana;"> algorithms, </span><span style="font-family:Verdana;">we build </span><span style="font-family:Verdana;">a biproportional construction theory</span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">The </span><span style="font-family:Verdana;">theory</span><span style="font-family:Verdana;"> consists of a </span><span style="font-family:Verdana;">first </span><span style="font-family:Verdana;">and a second</span><span style="font-family:Verdana;"> proportional construction theory</span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">The</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">former</span><span style="font-family:Verdana;"> correctly </span><span style="font-family:Verdana;">calcula</span><span style="font-family:Verdana;">te</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">the</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">FCs</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span><span style="font-family:Verdana;"> at </span></span><span style="font-family:Verdana;">the present</span><span style="font-family:Verdana;"> samp</span><span style="font-family:Verdana;">ling time</span> 展开更多
关键词 fourier coefficients (FCs) fourier Series (FS) Iteration Algorithm Aperiodic Non-Sinusoidal Signal
下载PDF
Recurrent formula of Bernoulli numbers and the relationships among the coefficients of beam,Bernoulli numbers and Euler numbers
15
作者 老大中 赵珊珊 老天夫 《Journal of Beijing Institute of Technology》 EI CAS 2015年第3期298-304,共7页
Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying... Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying the linear load is generalized,and then it is expanded into the corresponding Fourier series.With the obtained summation results of the infinite series,it is found that they are related to Bernoulli num-bers and π. The recurrent formula of Bernoulli numbers is presented. The relationships among the coefficients of the beam,Bernoulli numbers and Euler numbers are found,and the relative mathematical formulas are presented. 展开更多
关键词 Bernoulli numbers Euler numbers coefficients of beam simple beam equation of deflection curve fourier series
下载PDF
Otolith shape analysis for stock discrimination of two Collichthys genus croaker(Pieces:Sciaenidae,)from the northern Chinese coast 被引量:2
16
作者 ZHAO Bo LIU Jinhu +2 位作者 SONG Junjie CAO Liang DOU Shuozeng 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2018年第3期981-989,共9页
The otolith morphology of two croaker species(C ollichthys lucidus and C ollichthys niveatus) from three areas(Liaodong Bay, LD; Huanghe(Yellow) River estuary, HRE; Jiaozhou Bay, JZ) along the northern Chinese coast w... The otolith morphology of two croaker species(C ollichthys lucidus and C ollichthys niveatus) from three areas(Liaodong Bay, LD; Huanghe(Yellow) River estuary, HRE; Jiaozhou Bay, JZ) along the northern Chinese coast were investigated for species identifi cation and stock discrimination. The otolith contour shape described by elliptic Fourier coefficients(EFC) were analysed using principal components analysis(PCA) and stepwise canonical discriminant analysis(CDA) to identify species and stocks. The two species were well dif ferentiated, with an overall classifi cation success rate of 97.8%. And variations in the otolith shapes were significant enough to discriminate among the three geographical samples of C. lucidus(67.7%) or C. niveatus(65.2%). Relatively high mis-assignment occurred between the geographically adjacent LD and HRE samples, which implied that individual mixing may exist between the two samples. This study yielded information complementary to that derived from genetic studies and provided information for assessing the stock structure of C. lucidus and C. niveatus in the Bohai Sea and the Yellow Sea. 展开更多
关键词 otolith size descriptors elliptic fourier coefficients(EFC) stock structure Collichthys lucidus Collichthys niveatus
下载PDF
On Kadison’s Similarity Problem for Homomorphisms of the Algebra of Complex Polynomials 被引量:1
17
作者 Joachim Moussounda Mouanda 《Advances in Pure Mathematics》 2021年第9期755-770,共16页
We prove that every homomorphism of the algebra P<sub><em>n</em></sub> into the algebra of operators on a Hilbert space is completely bounded. We show that the contractive homomorphism introduc... We prove that every homomorphism of the algebra P<sub><em>n</em></sub> into the algebra of operators on a Hilbert space is completely bounded. We show that the contractive homomorphism introduced by Parrott, which is not completely contractive, is completely bounded (similar to a completely contractive homomorphism). We also show that homomorphisms of the algebra <span style="white-space:normal;">P</span><sub style="white-space:normal;"><em>n</em></sub> generate completely positive maps over the algebras <em>C</em>(T<sup><em>n</em></sup>)and <em>M</em><sub>2</sub>(<em>C</em>(T<sup><em>n</em></sup>)). 展开更多
关键词 Inequalities for Sums fourier coefficients Operator Theory POLYNOMIALS
下载PDF
On Von Neumann’s Inequality for Matrices of Complex Polynomials
18
作者 Joachim Moussounda Mouanda 《American Journal of Computational Mathematics》 2021年第4期289-303,共15页
We prove that every matrix </span><i><span style="font-family:"">F</span></i><span style="font-size:6.5pt;line-height:102%;font-family:宋体;">∈</span>... We prove that every matrix </span><i><span style="font-family:"">F</span></i><span style="font-size:6.5pt;line-height:102%;font-family:宋体;">∈</span><i><span style="font-family:"">M</span></i><sub><span style="font-family:"">k </span></sub><span style="font-family:"">(P<sub>n</sub>)</span><span style="font-family:""> is associated </span><span style="font-family:"">with</span><span style="font-family:""> </span><span style="font-family:"">the</span><span style="font-family:""> smallest positive integer </span><i><span style="font-family:"">d</span></i><span style="font-family:""> (<i>F</i>)</span><span style="font-size:8.0pt;line-height:102%;font-family:宋体;">≠</span><span style="font-family:"">1</span><span style="font-family:""> such that </span><i><span style="font-family:"">d </span></i><span style="font-family:"">(<i>F</i>)</span><span style="font-family:宋体;">‖</span><i><span style="font-family:"">F</span></i><span style="font-family:宋体;">‖</span><sub><span style="font-size:9px;line-height:102%;font-family:宋体;">∞</span></sub><span style="font-family:""> </span><span style="font-family:"">is always bigger than the sum of the operator norms of the Fourier coefficients of <i>F</i>. We establish some inequalities for matrices of complex polynomials. In application, we show that von Neumann’s inequality hold</span><span style="font-family:"">s</span><span style="font-family:""> up to the constant </span><span style="font-family:"">2<sup>n </sup></span><span style="font-family:"">for matrices of the algebra</span><span style="font-family:""> <i>M</i><sub>k </sub>(P<sub>n</sub>).</span><span style="font-family:""></span> </p> <br /> <span style="font-family:;" "=""></span> 展开更多
关键词 fourier coefficients Operator Theory POLYNOMIALS
下载PDF
A Note on the Solution of Water Wave Scattering Problem Involving Small Deformation on a Porous Channel-Bed
19
作者 S.Mohapatra M.R.Sarangi 《Journal of Marine Science and Application》 CSCD 2017年第1期10-19,共10页
The solution of water wave scattering problem involving small deformation on a porous bed in a channel, where the upper surface is bounded above by an infinitely extent rigid horizontal surface, is studied here within... The solution of water wave scattering problem involving small deformation on a porous bed in a channel, where the upper surface is bounded above by an infinitely extent rigid horizontal surface, is studied here within the framework of linearized water wave theory. In such a situation, there exists only one mode of waves propagating on the porous surface. A simplified perturbation analysis, involving a small parameter ε (≤1) , which measures the smallness of the deformation, is employed to reduce the governing Boundary Value Problem (BVP) to a simpler BVP for the first-order correction of the potential function. The first-order potential function and, hence, the first-order reflection and transmission coefficients are obtained by the method based on Fourier transform technique as well as Green's integral theorem with the introduction of appropriate Green's function. Two special examples of bottom deformation: the exponentially damped deformation and the sinusoidal ripple bed, are considered to validate the results. For the particular example of a patch of sinusoidal ripples, the resonant interaction between the bed and the upper surface of the fluid is attained in the neighborhood of a singularity, when the ripples wavenumbers of the bottom deformation become approximately twice the components of the incident field wavenumber along the positive x -direction. Also, the main advantage of the present study is that the results for the values of reflection and transmission coefficients are found to satisfy the energy-balance relation almost accurately. 展开更多
关键词 Porous bed bottom deformation perturbation analysis fourier Transform Green's function reflection coefficient transmission coefficient energy identity water wave scattering
下载PDF
Segmentation of Images from Fourier Spectral Data
20
作者 Anne Gelb Dennis Cates 《Communications in Computational Physics》 SCIE 2009年第2期326-349,共24页
This paper designs a segmentation method for an image based on its Fourier spectral data.An edge map is generated directly from the Fourier coefficients without first reconstructing the image in pixelated form.Consequ... This paper designs a segmentation method for an image based on its Fourier spectral data.An edge map is generated directly from the Fourier coefficients without first reconstructing the image in pixelated form.Consequently the internal boundaries of the edge map are not blurred by any(filtered)Fourier reconstruction.The edge map is then processed with an edge linking segmentation algorithm.We include examples from magnetic resonance imaging(MRI).Our results illustrate some potential benefits of using high order methods in imaging. 展开更多
关键词 fourier coefficients edge detection SEGMENTATION
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部