Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of pre...Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].展开更多
Trend term removal is a key step in Fourier transform infrared spectroscopy(FTIR)data pre-processing.The most commonly used least squares(LS)method,although satisfying the real-time requirement,has many problems such ...Trend term removal is a key step in Fourier transform infrared spectroscopy(FTIR)data pre-processing.The most commonly used least squares(LS)method,although satisfying the real-time requirement,has many problems such as highly correlated initial values of the expression parameters,the need to pre-estimate the trend term shape,and poor fitting accuracy at low signal-to-noise ratios.In order to achieve real-time and robust trend term removal,a new trend term removal method using genetic programming(GP)in symbolic regression is constructed in this paper,and the FTIR simulation interference results and experimental measurement data for common volatile organic compounds(VOCs)gases are analyzed.The results show that the genetic programming algorithm can both reduce the initial value requirement and greatly improve the trend term accuracy by 20%-30% in three evaluation indicators,which is suitable for gas FTIR detection in complex scenarios.展开更多
Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made u...Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made up of the vibrational absorption bands of protein,lipid and polysaccharide.There were minor differences in-cluding the spectral peak position, peak shape and the absorption intensity in the range of 1 800-1 300 cm-1. There were obvious differences among their second derivative spectra in the range of 1 800-1 300 cm-1. After the procedure of the Fourier self-deconvolution and curve fitting of health bean leaves and broad bean diseased leaves in the range of 1 700-1 500 cm-1, three sub-peaks were obtained at 1 550 cm-1 (protein amide Ⅱ band), 1 605 cm-1 (lignin) and 1 650 cm-1 (protein amide I band).The ratios of relative areas of the bands of amide Ⅱ, lignin, and amide I were 38.86%, 28.68% and 32.47% in the spectra of healthy leaves, respec-tively. It was distinguished from the diseased leaves (chocolate spot leaf: 15.42%, 42.98% and 41.61%, ring spot leaf:32.39%, 35.63% and 31.98%, rust leaf: 13.97%, 46.40% and 39.65%, yel owing leaf curl disease leaf: 24.01%,36.55% and 39.44%). For sub-peak area ratios (A1 563/A1 605, A1 650/A1 605 and A1 563/A1 654), those of four kinds of diseased leaves were smal er than that of healthy leaves, and there were also differences among four kinds of diseased leaves. The results proved that FTIR combining with curve fitting might be a potential y useful tool for detecting different kinds of broad bean diseases.展开更多
Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Se...Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Setaria italica have been chosen as suitable monocotyledonous models for plants possessing the C4 pathway of photosynthesis including sorghum,maize,sugarcane,switchgrass and Miscanthus×giganteus.Accurate partial least squares regression(PLSR)models to predict S.italica stem composition have been generated,based upon Fourier transform mid-infrared(FTIR)spectra and calibrated with wet chemistry determinations of ground S.italica stem material measured using a modified version of the US National Renewable Energy Laboratory(NREL)acid hydrolysis protocol.The models facilitated a high-throughput screening analysis for glucan,xylan,Klason lignin and acid soluble lignin(ASL)in a collection of 183 natural S.italica variants and clustered them into classes,some possessing unique chemotypes.The predictive models provide a highly efficient screening tool for large scale breeding programs aimed at identifying lines or mutants possessing unique cell wall chemotypes.Genes encoding key catalytic enzymes of the lignin biosynthesis pathway exhibit a high level of conservation with matching expression profiles,measured by RT-q PCR,among accessions of S.italica,which closely mirror profiles observed in the different developmental regions of an elongating internode of S.viridis by RNASeq.展开更多
Cyanobacteria are gram-negative photosynthetic bacteria capable of producing toxins responsible for morbidity and mortality in humans and domestic animals. They are capable of forming concentrated blooms, referred to ...Cyanobacteria are gram-negative photosynthetic bacteria capable of producing toxins responsible for morbidity and mortality in humans and domestic animals. They are capable of forming concentrated blooms, referred to as harmful algal blooms (HABs). Characterization of HABs is necessary to reduce risks from human and animal exposures to toxins. Current methods used to classify cyanobacteria and cyanotoxins have limitations related to time, analyst skills, and cost. Fourier-Transform Infrared Spectroscopy (FTIR) is a potential tool for rapid, robust cyanobacterial classification that is not limited by these factors. To examine the practicality of this method, library screening with default software algorithms was performed on HAB samples, followed by principle component cluster analyses and dendrogram analysis of samples meeting minimum quality requirements. Two tested spectrometers and software packages were successful at distinguishing cyanobacteria from green algae. Principle component cluster analysis and dendrogram analysis also resulted in clear differentiation between cyanobacteria and green algae. While these methods cannot be used independently to fully characterize HABs, they show the potential and practicality of FTIR as a screening tool.展开更多
In order to distinguish eight carnation cultivars, 40 samples were analyzed by Fourier transform infrared (FI'IR) spectroscopy combined with principal component analysis (PCA) and hierarchical cluster analysis (...In order to distinguish eight carnation cultivars, 40 samples were analyzed by Fourier transform infrared (FI'IR) spectroscopy combined with principal component analysis (PCA) and hierarchical cluster analysis (HCA). According to the results, infrared spectra of eight carnation cuhivars were similar, but signifi- cant differences were observed in wave numbers and absorption peak intensities in the range of 1 800 -700cm-1. The second order derivative spectra in the range of 1 800 -700 cm -l were selected to perform principal component analysis (PCA) and hierarchical cluster analysis (HCA). The cumulative contribution rate of the first three principal components reached 96.2%. The classification accuracy rate of PCA and HCA was 95% and 100%, respectively. The results demonstrated that Fourier transform infrared (FTIR) spectroscopy combined with principal component analysis (PCA) and hierarchical cluster analysis (HCA) could be used for identification of different carnation cultivars.展开更多
Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of conce...Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer-Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds.展开更多
Fourier transform infrared spectroscopy (FTIR) was used to detect the spectral difference among leaf tips from rice ( Oryza sativa L.) plants with different nitrogen fertilizer rates. The proposed spectral index,...Fourier transform infrared spectroscopy (FTIR) was used to detect the spectral difference among leaf tips from rice ( Oryza sativa L.) plants with different nitrogen fertilizer rates. The proposed spectral index, ( A 3400 - A 1653 )/( A 3400 + A 1653 ) ( A denotes absorption value at certain frequency (cm -1 )), was found to decline with the increase of nitrogen fertilizer rates and the results suggested that FTIR may be useful to diagnose nitrogen status in crops.展开更多
In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice...In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice,forming solid solutions.The catalysts were then used for the selective catalytic reduction(SCR)of NO by CO.The Cu‐doped catalyst exhibited the highest SCR activity;it had a T50(i.e.,50%NO conversion)of only 83°C and a T90(i.e.,90%NO conversion)of 126°C.Such an activity was also higher than in many state‐of‐the‐art catalysts.In situ diffuse reflectance Fourier transform infrared spectroscopy suggested that the MOx‐CeO2 catalysts(M=Co and Fe)mainly followed an Eley‐Rideal reaction mechanism for CO‐SCR.In contrast,a Langmuir‐Hinshelwood SCR reaction mechanism occurred in CuO‐CeO2 owing to the presence of Cu+species,which ensured effective adsorption of CO.This explains why CuO‐CeO2 exhibited the highest activity with regard to the SCR of NO by CO.展开更多
With the technique of Fourier transform near infrared (FT-NIR) spectroscopy, the calibration models for quantitative analysis of sucrose and polarization in sugarcane juice were developed by using transmission mode an...With the technique of Fourier transform near infrared (FT-NIR) spectroscopy, the calibration models for quantitative analysis of sucrose and polarization in sugarcane juice were developed by using transmission mode and calibrating with partial least square (PLS) algorithm. The determination coefficients (R2) of the predicted models for sucrose and polarization in juice were 0. 9980 and 0. 9979 respectively; the root mean square errors of cross validation (RMSECV) were 0. 143 and 0. 155% for sucrose and polarization in juice respectively. The predictive errors measured by FT-NIR were close to those by routine laboratory methods. The results demonstrated that the FT-NIR methods had high accuracy and they were able to replace the routine laboratory analysis. It was also demonstrated that as a rapid and accurate measurement, the FT-NIR technique had potential applications in quality control of mill sugarcane, establishment of payment system based on sugarcane quality, and selection of clones in sugarcane breeding.展开更多
AIM: Real-time and rapid Identification of the malignant tissue can be performed during or before surgical operation. Here we aimed to detect in vivo and in situ colorectal cancer by using Fourier transform infrared (...AIM: Real-time and rapid Identification of the malignant tissue can be performed during or before surgical operation. Here we aimed to detect in vivo and in situ colorectal cancer by using Fourier transform infrared (FTIR) spectroscopy and fiber-optic technology. METHODS: A total of five patients with large intestine cancer were detected in vivo and in situ. Of them, three cases of colon cancer and one case of cecum cancer were detected intraoperatively and in vivo by using a FTIR spectrometer during surgical operation, and one case of rectum cancer was explored non-invasively and in vivo before the surgical operation. Normal and malignant colorectal tissues were detected in vivo and in situ using FTIR spectroscopy on the basis of fundamental studies. RESULTS: There were significant differences between FTIR spectra of normal and malignant colorectal tissues detected in vivo and in situ. Experimental results revealed that the spectral characteristics of normal and malignant tissues found in vivo and in situ were similar to those obtained from in vitro measurement in our previous fundamental research. CONCLUSION: FTIR fiber-optic attenuated total reflectance (ATR) spectroscopy can identify in situ and in vivo colorectal cancer. FTIR spectroscopie method with fiber optics is a non-invasive, rapid, accurate and in vivo cancer detection technique in clinical diagnosis.展开更多
Swelling clays are found extensively in various parts of the world, and sodium-montmorillonite(NaMMT) is the main constituent of an expansive clay mineral. In this work, the swelling behavior of NaMMT clay with a wide...Swelling clays are found extensively in various parts of the world, and sodium-montmorillonite(NaMMT) is the main constituent of an expansive clay mineral. In this work, the swelling behavior of NaMMT clay with a wide range of organic fluids, high polar through low polar fluids, is studied using a combination of Fourier transform infrared(FTIR) technique and molecular dynamics(MD) simulations.The construction of the representative clayefluid models is carried out, and the nature of nonbonded interactions between clay and fluids is studied using MD. Our FTIR and MD simulations results suggest the significant nonbonded interactions between Na-MMT clay and polar fluids, such as formamide and water. The nonbonded interactions of Na-MMT with methanol and acetone are significantly less than those in Na-MMT with polar fluids. The interactions of the fluids with various entities of the clay such as Sie O, Fee OH, Mge OH, and Ale OH captured via the spectroscopy experiments and modeling provide a finer understanding of the interactions and their contributions to swelling. The MD simulations are able to capture the band shifts observed in the spectra obtained in the spectroscopy experiments. This work also captures the conformations of interlayer sodium ions with formamide, water, methanol, and acetone during swelling. These nonbonded interactions provide insight into the molecular mechanism that the polarity of fluids plays an important role in the initiation of interlayer swelling, alteration in the orientations, and evolution of microstructure of swelling clays at the molecular scale.展开更多
Rapid and cost effective quantification of lignocellulosic components (cellulose, hemicelluloses and lignin) of agricultural biomass (barley, canola, oat and wheat) is essential to determine the effect of various ...Rapid and cost effective quantification of lignocellulosic components (cellulose, hemicelluloses and lignin) of agricultural biomass (barley, canola, oat and wheat) is essential to determine the effect of various pre-treatments (such as steam explosion) on biomass used as feedstock for the biofuel industry. Fourier Transformed Infrared (FTIR) spectroscopy was considered as an option to achieve this objective. Regression equations having R2 values of 0.89, 0.99 and 0.98 were developed to predict the cellulose, hemicelluloses and lignin compounds of biomass, respectively. The average absolute difference in predicted and measured cellulose, hemicellulose and lignin in agricultural biomass was 7.5%, 2.5%, and 3.8%, respectively.展开更多
Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine de...Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 ℃. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ~1, ~3 phosphate contour: the ratio of the height amplitude of ~3 P04 to that of/11 P04 (Method 1) and the shift of the v3 P04 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P〈0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR- FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion.展开更多
Fourier transform infrared (FTIR) spectroscopy has beenextensively employed in flotation research. The work done by theauthor and co-workers has been reported. A comparison has been madeamong the different FTIR spectr...Fourier transform infrared (FTIR) spectroscopy has beenextensively employed in flotation research. The work done by theauthor and co-workers has been reported. A comparison has been madeamong the different FTIR spectroscopic techniques, e.g., transmissionFTIR spectroscopy, diffuse reflectance infrared Fourier transform(DRIFT) spectroscopy, and attenuated total reflectance (ATR) FTIRspectroscopy.展开更多
Fourier transform infrared imaging(FTIRI)was used to examine the depth-dependent content variations of macromolcular components,ollagen and protooglycan(PG),in osteoarthritic and healthy cartilages.Dried 6 pmm thick s...Fourier transform infrared imaging(FTIRI)was used to examine the depth-dependent content variations of macromolcular components,ollagen and protooglycan(PG),in osteoarthritic and healthy cartilages.Dried 6 pmm thick sections of canine knee cartilages were imaged at 6.25 pμrm pixel-size in FTIRI.By analyzing the infrared(IR)images and spectra,the depth dependence of characteristic band(sugar)intensity of PG show obvious difference bet ween the cartilage sections of(OA)and bealth.The result confimns that PG content decreases in the ostcoarthritic cartilage.However,no clear change occurs to collagen,suggesting that the OA influences little on the collagen content at early stage of OA.This observation will be helpful to further understand PG loss associated with pathological conditions in OA,and demonstrates that FIIRI has the po-tential to become an important analytical tool to identify early clinical signs of tissue degna-dation,such as PG loss even collagen disruption.展开更多
Two discriminant methods,partial least squares-discriminant analysis(PLS-DA)and Fisher's discriminant analysis(FDA),were combined with Fourier transform infrared imaging(FTIRI)to differentiate healthy and osteoart...Two discriminant methods,partial least squares-discriminant analysis(PLS-DA)and Fisher's discriminant analysis(FDA),were combined with Fourier transform infrared imaging(FTIRI)to differentiate healthy and osteoarthritic articular cartilage in a canine model.Osteoarthritic cartilage had been developed for up to two years after the anterior cruciate ligament(ACL)transection in one knee.Cartilage specimens were sectioned into 10μm thickness for FTIRI.A PLS-DA model was developed after spectral pre-processing.All IR spectra extracted from FTIR images were calculated by PLS-DA with the discriminant accuracy of 90%.Prior to FDA,principal component analysis(PCA)was performed to decompose the IR spectral matrix into informative princi pal component matrices.Based on the different discriminant mechanism,the discriminant accuracy(96%)of PCA-FDA with high convenience was higher than that of PLS-DA.No healthy cartilage sample was mis assigned by these two methods.The above mentioned suggested that both integrated technologies of FTIRI-PLS-DA and,especially,FTIRI-PCA-FDA could become a promising tool for the discrimination of healthy and osteoarthritic cartilage specimen as well as the diagnosis of cartilage lesion at microscopic level.The results of the study would be helpful for better understanding the pathology of osteoarthritics.展开更多
Wild-grown Ganoderma lucidum (G. lucidum), a traditional Chinese herbal medicine, is highly cherished and expensive for its medicinal efficiency. This study targets the development of an accurate and effective analyti...Wild-grown Ganoderma lucidum (G. lucidum), a traditional Chinese herbal medicine, is highly cherished and expensive for its medicinal efficiency. This study targets the development of an accurate and effective analytical method to distinguish wild-grown G. lucidum from cultivated ones, which are of essential importance for the quality assurance and estimation of its medicinal value. Furthermore, different parts of G. lucidum have been studied to examine the differences between wild-grown and cultivated ones. Fourier transform infrared (FTIR) diffuse reflectance spectroscopy combined with the appropriate chemometric method has been proven to be a rapid and powerful tool for discrimination of wild-grown and cultivated G. lucidum with classification accuracy of 98%. The informative spectral absorption bands for discrimination emphasized by the linear diagnostic rule have provided quantitative interpretations of the chemical constituents of wild-grown G. lucidum regarding its anticancer effects.展开更多
Objective:To investigate the active components Zuogui Pill,a typical recipe for nourishing kidney essence in the traditional Chinese medicine.Methods:Adult male Sprague Dawley rats were treated with the traditional Ch...Objective:To investigate the active components Zuogui Pill,a typical recipe for nourishing kidney essence in the traditional Chinese medicine.Methods:Adult male Sprague Dawley rats were treated with the traditional Chinese herbal medicine Zuogui Pill and the active components found in the serum of the animals were analyzed by Fourier transform infrared(FTIR)spectroscopy.FTIR spectra of serum samples of treated and untreated rats were analyzed and the A2960/A2931 and A1540/A1080 ratios were calculated.Results:A2960/A2931 ratios of the serum samples collected following the administration of Zuogui Pill were significantly higher than those of the normal serum samples.FTIR data were then fitted using a Gaussian equation for wave numbers in the range of 1140e1000 cm1.ARNA/ADNA ratios in the serum of rats treated with Zuogui Pill were higher than those found in normal rat serum.Conclusion:FTIR spectroscopy could be used as an analytical tool to detect the activecomponents in serum of animals treated with Zuogui Pill.展开更多
基金supported by the National Natural Science Foundation China(No.42022051,No.U21A2028)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y202089)the HFIPS Director's Fund(No.YZJJ202101,No.BJPY2023A02).
文摘Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].
基金supported by JKW Program(No.M102-03)National Program(No.E0F80246).
文摘Trend term removal is a key step in Fourier transform infrared spectroscopy(FTIR)data pre-processing.The most commonly used least squares(LS)method,although satisfying the real-time requirement,has many problems such as highly correlated initial values of the expression parameters,the need to pre-estimate the trend term shape,and poor fitting accuracy at low signal-to-noise ratios.In order to achieve real-time and robust trend term removal,a new trend term removal method using genetic programming(GP)in symbolic regression is constructed in this paper,and the FTIR simulation interference results and experimental measurement data for common volatile organic compounds(VOCs)gases are analyzed.The results show that the genetic programming algorithm can both reduce the initial value requirement and greatly improve the trend term accuracy by 20%-30% in three evaluation indicators,which is suitable for gas FTIR detection in complex scenarios.
基金Supported by National Natural Science Foundation of China(30960179)Program for Innovative Research Team in Science and Technology in University of Yunnan Province~~
文摘Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made up of the vibrational absorption bands of protein,lipid and polysaccharide.There were minor differences in-cluding the spectral peak position, peak shape and the absorption intensity in the range of 1 800-1 300 cm-1. There were obvious differences among their second derivative spectra in the range of 1 800-1 300 cm-1. After the procedure of the Fourier self-deconvolution and curve fitting of health bean leaves and broad bean diseased leaves in the range of 1 700-1 500 cm-1, three sub-peaks were obtained at 1 550 cm-1 (protein amide Ⅱ band), 1 605 cm-1 (lignin) and 1 650 cm-1 (protein amide I band).The ratios of relative areas of the bands of amide Ⅱ, lignin, and amide I were 38.86%, 28.68% and 32.47% in the spectra of healthy leaves, respec-tively. It was distinguished from the diseased leaves (chocolate spot leaf: 15.42%, 42.98% and 41.61%, ring spot leaf:32.39%, 35.63% and 31.98%, rust leaf: 13.97%, 46.40% and 39.65%, yel owing leaf curl disease leaf: 24.01%,36.55% and 39.44%). For sub-peak area ratios (A1 563/A1 605, A1 650/A1 605 and A1 563/A1 654), those of four kinds of diseased leaves were smal er than that of healthy leaves, and there were also differences among four kinds of diseased leaves. The results proved that FTIR combining with curve fitting might be a potential y useful tool for detecting different kinds of broad bean diseases.
文摘Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Setaria italica have been chosen as suitable monocotyledonous models for plants possessing the C4 pathway of photosynthesis including sorghum,maize,sugarcane,switchgrass and Miscanthus×giganteus.Accurate partial least squares regression(PLSR)models to predict S.italica stem composition have been generated,based upon Fourier transform mid-infrared(FTIR)spectra and calibrated with wet chemistry determinations of ground S.italica stem material measured using a modified version of the US National Renewable Energy Laboratory(NREL)acid hydrolysis protocol.The models facilitated a high-throughput screening analysis for glucan,xylan,Klason lignin and acid soluble lignin(ASL)in a collection of 183 natural S.italica variants and clustered them into classes,some possessing unique chemotypes.The predictive models provide a highly efficient screening tool for large scale breeding programs aimed at identifying lines or mutants possessing unique cell wall chemotypes.Genes encoding key catalytic enzymes of the lignin biosynthesis pathway exhibit a high level of conservation with matching expression profiles,measured by RT-q PCR,among accessions of S.italica,which closely mirror profiles observed in the different developmental regions of an elongating internode of S.viridis by RNASeq.
文摘Cyanobacteria are gram-negative photosynthetic bacteria capable of producing toxins responsible for morbidity and mortality in humans and domestic animals. They are capable of forming concentrated blooms, referred to as harmful algal blooms (HABs). Characterization of HABs is necessary to reduce risks from human and animal exposures to toxins. Current methods used to classify cyanobacteria and cyanotoxins have limitations related to time, analyst skills, and cost. Fourier-Transform Infrared Spectroscopy (FTIR) is a potential tool for rapid, robust cyanobacterial classification that is not limited by these factors. To examine the practicality of this method, library screening with default software algorithms was performed on HAB samples, followed by principle component cluster analyses and dendrogram analysis of samples meeting minimum quality requirements. Two tested spectrometers and software packages were successful at distinguishing cyanobacteria from green algae. Principle component cluster analysis and dendrogram analysis also resulted in clear differentiation between cyanobacteria and green algae. While these methods cannot be used independently to fully characterize HABs, they show the potential and practicality of FTIR as a screening tool.
基金Supported by National Natural Science Foundation of China"Vibration Spectrum-based Diagnosis of Biological Diseases in Broad Bean"(30960179)Science and Technology Innovation Program for Universities in Yunnan Province
文摘In order to distinguish eight carnation cultivars, 40 samples were analyzed by Fourier transform infrared (FI'IR) spectroscopy combined with principal component analysis (PCA) and hierarchical cluster analysis (HCA). According to the results, infrared spectra of eight carnation cuhivars were similar, but signifi- cant differences were observed in wave numbers and absorption peak intensities in the range of 1 800 -700cm-1. The second order derivative spectra in the range of 1 800 -700 cm -l were selected to perform principal component analysis (PCA) and hierarchical cluster analysis (HCA). The cumulative contribution rate of the first three principal components reached 96.2%. The classification accuracy rate of PCA and HCA was 95% and 100%, respectively. The results demonstrated that Fourier transform infrared (FTIR) spectroscopy combined with principal component analysis (PCA) and hierarchical cluster analysis (HCA) could be used for identification of different carnation cultivars.
基金Project supported by the National Natural Science Foundation of China (Grant No 083H311501)the National High Technology Research and Development Program of China (Grant No 073H3f1514)
文摘Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer-Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds.
文摘Fourier transform infrared spectroscopy (FTIR) was used to detect the spectral difference among leaf tips from rice ( Oryza sativa L.) plants with different nitrogen fertilizer rates. The proposed spectral index, ( A 3400 - A 1653 )/( A 3400 + A 1653 ) ( A denotes absorption value at certain frequency (cm -1 )), was found to decline with the increase of nitrogen fertilizer rates and the results suggested that FTIR may be useful to diagnose nitrogen status in crops.
文摘In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice,forming solid solutions.The catalysts were then used for the selective catalytic reduction(SCR)of NO by CO.The Cu‐doped catalyst exhibited the highest SCR activity;it had a T50(i.e.,50%NO conversion)of only 83°C and a T90(i.e.,90%NO conversion)of 126°C.Such an activity was also higher than in many state‐of‐the‐art catalysts.In situ diffuse reflectance Fourier transform infrared spectroscopy suggested that the MOx‐CeO2 catalysts(M=Co and Fe)mainly followed an Eley‐Rideal reaction mechanism for CO‐SCR.In contrast,a Langmuir‐Hinshelwood SCR reaction mechanism occurred in CuO‐CeO2 owing to the presence of Cu+species,which ensured effective adsorption of CO.This explains why CuO‐CeO2 exhibited the highest activity with regard to the SCR of NO by CO.
文摘With the technique of Fourier transform near infrared (FT-NIR) spectroscopy, the calibration models for quantitative analysis of sucrose and polarization in sugarcane juice were developed by using transmission mode and calibrating with partial least square (PLS) algorithm. The determination coefficients (R2) of the predicted models for sucrose and polarization in juice were 0. 9980 and 0. 9979 respectively; the root mean square errors of cross validation (RMSECV) were 0. 143 and 0. 155% for sucrose and polarization in juice respectively. The predictive errors measured by FT-NIR were close to those by routine laboratory methods. The results demonstrated that the FT-NIR methods had high accuracy and they were able to replace the routine laboratory analysis. It was also demonstrated that as a rapid and accurate measurement, the FT-NIR technique had potential applications in quality control of mill sugarcane, establishment of payment system based on sugarcane quality, and selection of clones in sugarcane breeding.
基金Supported by the National Natural Science Foundation of China, No. 30371604 State Key Project of China, No. 2002CCA01900
文摘AIM: Real-time and rapid Identification of the malignant tissue can be performed during or before surgical operation. Here we aimed to detect in vivo and in situ colorectal cancer by using Fourier transform infrared (FTIR) spectroscopy and fiber-optic technology. METHODS: A total of five patients with large intestine cancer were detected in vivo and in situ. Of them, three cases of colon cancer and one case of cecum cancer were detected intraoperatively and in vivo by using a FTIR spectrometer during surgical operation, and one case of rectum cancer was explored non-invasively and in vivo before the surgical operation. Normal and malignant colorectal tissues were detected in vivo and in situ using FTIR spectroscopy on the basis of fundamental studies. RESULTS: There were significant differences between FTIR spectra of normal and malignant colorectal tissues detected in vivo and in situ. Experimental results revealed that the spectral characteristics of normal and malignant tissues found in vivo and in situ were similar to those obtained from in vitro measurement in our previous fundamental research. CONCLUSION: FTIR fiber-optic attenuated total reflectance (ATR) spectroscopy can identify in situ and in vivo colorectal cancer. FTIR spectroscopie method with fiber optics is a non-invasive, rapid, accurate and in vivo cancer detection technique in clinical diagnosis.
基金the support of USDoT,Mountain Plains Consortium,UGPTI under grant No.#69A3551747108
文摘Swelling clays are found extensively in various parts of the world, and sodium-montmorillonite(NaMMT) is the main constituent of an expansive clay mineral. In this work, the swelling behavior of NaMMT clay with a wide range of organic fluids, high polar through low polar fluids, is studied using a combination of Fourier transform infrared(FTIR) technique and molecular dynamics(MD) simulations.The construction of the representative clayefluid models is carried out, and the nature of nonbonded interactions between clay and fluids is studied using MD. Our FTIR and MD simulations results suggest the significant nonbonded interactions between Na-MMT clay and polar fluids, such as formamide and water. The nonbonded interactions of Na-MMT with methanol and acetone are significantly less than those in Na-MMT with polar fluids. The interactions of the fluids with various entities of the clay such as Sie O, Fee OH, Mge OH, and Ale OH captured via the spectroscopy experiments and modeling provide a finer understanding of the interactions and their contributions to swelling. The MD simulations are able to capture the band shifts observed in the spectra obtained in the spectroscopy experiments. This work also captures the conformations of interlayer sodium ions with formamide, water, methanol, and acetone during swelling. These nonbonded interactions provide insight into the molecular mechanism that the polarity of fluids plays an important role in the initiation of interlayer swelling, alteration in the orientations, and evolution of microstructure of swelling clays at the molecular scale.
文摘Rapid and cost effective quantification of lignocellulosic components (cellulose, hemicelluloses and lignin) of agricultural biomass (barley, canola, oat and wheat) is essential to determine the effect of various pre-treatments (such as steam explosion) on biomass used as feedstock for the biofuel industry. Fourier Transformed Infrared (FTIR) spectroscopy was considered as an option to achieve this objective. Regression equations having R2 values of 0.89, 0.99 and 0.98 were developed to predict the cellulose, hemicelluloses and lignin compounds of biomass, respectively. The average absolute difference in predicted and measured cellulose, hemicellulose and lignin in agricultural biomass was 7.5%, 2.5%, and 3.8%, respectively.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)the Ministry of Education(2013R1A1A2061732)
文摘Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 ℃. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ~1, ~3 phosphate contour: the ratio of the height amplitude of ~3 P04 to that of/11 P04 (Method 1) and the shift of the v3 P04 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P〈0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR- FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion.
文摘Fourier transform infrared (FTIR) spectroscopy has beenextensively employed in flotation research. The work done by theauthor and co-workers has been reported. A comparison has been madeamong the different FTIR spectroscopic techniques, e.g., transmissionFTIR spectroscopy, diffuse reflectance infrared Fourier transform(DRIFT) spectroscopy, and attenuated total reflectance (ATR) FTIRspectroscopy.
基金The authors are grateful to the National Institutes of Health in U.S.A.for the R01 grants(AR 045172,AR 052353)to Yang Xia.
文摘Fourier transform infrared imaging(FTIRI)was used to examine the depth-dependent content variations of macromolcular components,ollagen and protooglycan(PG),in osteoarthritic and healthy cartilages.Dried 6 pmm thick sections of canine knee cartilages were imaged at 6.25 pμrm pixel-size in FTIRI.By analyzing the infrared(IR)images and spectra,the depth dependence of characteristic band(sugar)intensity of PG show obvious difference bet ween the cartilage sections of(OA)and bealth.The result confimns that PG content decreases in the ostcoarthritic cartilage.However,no clear change occurs to collagen,suggesting that the OA influences little on the collagen content at early stage of OA.This observation will be helpful to further understand PG loss associated with pathological conditions in OA,and demonstrates that FIIRI has the po-tential to become an important analytical tool to identify early clinical signs of tissue degna-dation,such as PG loss even collagen disruption.
基金the National Natural Science Foundation of China for the grant of 61378087Natural Science Foundation of Jiangsu Province(BK20151478)+1 种基金Zhi-Hua Mao is grateful to the Open Funds for Graduate Innovation Lab of Nanjing University of Aeronautics and Astronautics(kfjj20150309)and Fundamental Research Funds for the Central Universities.The raw data acquisition in FTIRI was mostly carried out in the lab of Professor Yang Xia at Oakland University(Rochester,Michigan,USA).Professor Xia was supported by an NIH grant R01-AR052353 during the time of the data acquisition.
文摘Two discriminant methods,partial least squares-discriminant analysis(PLS-DA)and Fisher's discriminant analysis(FDA),were combined with Fourier transform infrared imaging(FTIRI)to differentiate healthy and osteoarthritic articular cartilage in a canine model.Osteoarthritic cartilage had been developed for up to two years after the anterior cruciate ligament(ACL)transection in one knee.Cartilage specimens were sectioned into 10μm thickness for FTIRI.A PLS-DA model was developed after spectral pre-processing.All IR spectra extracted from FTIR images were calculated by PLS-DA with the discriminant accuracy of 90%.Prior to FDA,principal component analysis(PCA)was performed to decompose the IR spectral matrix into informative princi pal component matrices.Based on the different discriminant mechanism,the discriminant accuracy(96%)of PCA-FDA with high convenience was higher than that of PLS-DA.No healthy cartilage sample was mis assigned by these two methods.The above mentioned suggested that both integrated technologies of FTIRI-PLS-DA and,especially,FTIRI-PCA-FDA could become a promising tool for the discrimination of healthy and osteoarthritic cartilage specimen as well as the diagnosis of cartilage lesion at microscopic level.The results of the study would be helpful for better understanding the pathology of osteoarthritics.
文摘Wild-grown Ganoderma lucidum (G. lucidum), a traditional Chinese herbal medicine, is highly cherished and expensive for its medicinal efficiency. This study targets the development of an accurate and effective analytical method to distinguish wild-grown G. lucidum from cultivated ones, which are of essential importance for the quality assurance and estimation of its medicinal value. Furthermore, different parts of G. lucidum have been studied to examine the differences between wild-grown and cultivated ones. Fourier transform infrared (FTIR) diffuse reflectance spectroscopy combined with the appropriate chemometric method has been proven to be a rapid and powerful tool for discrimination of wild-grown and cultivated G. lucidum with classification accuracy of 98%. The informative spectral absorption bands for discrimination emphasized by the linear diagnostic rule have provided quantitative interpretations of the chemical constituents of wild-grown G. lucidum regarding its anticancer effects.
基金the National International Cooperation Science and Technology Support Program of the Ministry of Science and Technology of the People’s Republic of China(2012DFA31330).
文摘Objective:To investigate the active components Zuogui Pill,a typical recipe for nourishing kidney essence in the traditional Chinese medicine.Methods:Adult male Sprague Dawley rats were treated with the traditional Chinese herbal medicine Zuogui Pill and the active components found in the serum of the animals were analyzed by Fourier transform infrared(FTIR)spectroscopy.FTIR spectra of serum samples of treated and untreated rats were analyzed and the A2960/A2931 and A1540/A1080 ratios were calculated.Results:A2960/A2931 ratios of the serum samples collected following the administration of Zuogui Pill were significantly higher than those of the normal serum samples.FTIR data were then fitted using a Gaussian equation for wave numbers in the range of 1140e1000 cm1.ARNA/ADNA ratios in the serum of rats treated with Zuogui Pill were higher than those found in normal rat serum.Conclusion:FTIR spectroscopy could be used as an analytical tool to detect the activecomponents in serum of animals treated with Zuogui Pill.