As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring sys...As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring system.In order to solve the problem of wavelength redundancy in full spectrum partial least squares(PLS)modeling for VOCs concentration analysis,a new method based on improved interval PLS(iPLS)integrated with Monte-Carlo sampling,called iPLS-MC method,was proposed to select optimal characteristic wavelengths of VOCs spectra.This method uses iPLS modeling to preselect the characteristic wavebands of the spectra and generates random wavelength combinations from the selected wavebands by Monte-Carlo sampling.The wavelength combination with the best prediction result in regression model is selected as the characteristic wavelengths of the spectrum.Different wavelength selection methods were built,respectively,on Fourier transform infrared(FTIR)spectra of ethylene and ethanol gas at different concentrations obtained in the laboratory.When the interval number of iPLS model is set to 30 and the Monte-Carlo sampling runs 1000 times,the characteristic wavelengths selected by iPLS-MC method can reduce from 8916 to 10,which occupies only 0.22%of the full spectrum wavelengths.While the RMSECV and correlation coefficient(Rc)for ethylene are 0.2977 and 0.9999 ppm,and those for ethanol gas are 0.2977 ppm and 0.9999.The experimental results show that the iPLS-MC method can select the optimal characteristic wavelengths of VOCs FTIR spectra stably and effectively,and the prediction performance of the regression model can be significantly improved and simplified by using characteristic wavelengths.展开更多
Dissolved organic matter(DOM) plays important roles in soil biogeochemistry activity and nutrients transportation in soils, but studies regarding the long-term effects of green manures on the content and structure of ...Dissolved organic matter(DOM) plays important roles in soil biogeochemistry activity and nutrients transportation in soils, but studies regarding the long-term effects of green manures on the content and structure of DOM in red paddy soil have not been reported yet. A long-term green manure experiment established in 1982 was utilized to test the DOM contents in different treatments, and the spectral characteristics of DOM were investigated by using ultraviolet-visible(UV-Vis) spectrometry and Fourier transform infrared(FTIR) spectrometry. The experiment included four cropping systems: ricerice-milk vetch(RRV), rice-rice-rape(RRP), rice-rice-ryegrass(RRG) and rice-rice-winter fallow(RRF), among them, milk vetch, rape, and ryegrass are popular winter green manure species in southern China. The results showed that the content of dissolved organic carbon(DOC), which is widely used to estimate the concentration of DOM, was significantly promoted after the incorporation of green manures compared with the other sampling stages. The contents of aromatic groups and the degree of humification of DOM increased in RRV and RRP, suggesting more complex compositions of the soil DOM after long-term application of milk vetch and rape. The contents of phenol, alcohol and carboxylic acid group at the mature stage of early rice were significantly higher than those at the stage of after green manures turned over, especially for the RRV treatment. The absorption ratio of FTIR indicated that winter plantation of rape increased the aromatic-C/aliphatic-C ratio, and ryegrass increased the aromatic-C/carboxyl-C ratio. In conclusion, long-term planting of milk vetch and rape as green manures increased the degree of aromaticity, humification and average molecular weight of DOM, and made the DOM more stable in red paddy soil.展开更多
We characterized humic acids (HAs) and glycerol-extractable organic fractions (GEOFs) extracted from four Andisols, taken from comparable soil-climate conditions on the east side of Mount Etna. The soils were form...We characterized humic acids (HAs) and glycerol-extractable organic fractions (GEOFs) extracted from four Andisols, taken from comparable soil-climate conditions on the east side of Mount Etna. The soils were formed on old lava (about 9000 years ago), old tephra (about 8 700 years ago), recent lava (about 2 600 years ago) and recent tephra (about 3600 years ago). A part of the organic matter of the soils, deprived of HAs and fulvic acids (FAs), was isolated by glycerol extraction. The GEOF can not be extracted with alkaline solutions, probably because it is closely bound to the mineral component of the soil. The characterization of the extracted organic fraction was carried out using elementary and functional group analysis and Fourier transform infrared (FT-IR) spectroscopy. About 20 extractions were necessary to extract the HA and FA from the older soils and about 10 extractions to extract them from the younger soils. Data showed that the CEOFs had a greater ash content and a smaller N content, as well as a greater presence of aliphatic compounds and carboxylic groups as compared to the HA extracted from the same soil. The GEOFs extracted from younger soils also had a lower yield, ash and COOH-group content, and were more aliphatic than the GEOF extracted from older soils. Finally, the GEOFs were more closely bound to the amorphous component of the soil ('short-range' minerals) and consequently less subject to biodegradation.展开更多
Bioaerosols exhibit significant broadband extinction performance and have vital impacts on climate change,optical detection,communication,disease transmission,and the development of optical attenuation materials.Micro...Bioaerosols exhibit significant broadband extinction performance and have vital impacts on climate change,optical detection,communication,disease transmission,and the development of optical attenuation materials.Microbial spores and microbial hyphae represent two primary forms of bioaerosol particles.However,a comprehensive investigation and comparison of their optical properties have not been conducted yet.In this paper,the spectra of spores and hyphae were tested,and the absorption peaks,component contents,and protein structural differences were compared.Accurate structural models were established,and the optical attenuation parameters were calculated.Aerosol chamber experiments were conducted to verify the optical attenuation performance of microbial spores and hyphae in the mid-infrared and far-infrared spectral bands.Results demonstrate that selecting spores and hyphae can significantly reduce the average transmittance from 21.2%to 6.4%in the mid-infrared band and from 31.3%to 19.6%in the far-infrared band within three minutes.The conclusions have significant implications for the selection of high-performance microbial optical attenuation materials as well as for the rapid detection of bioaerosol types in research on climate change and the spread of pathogenic aerosols.展开更多
In this paper, some new results on the selective weak interaction between Na-4-tosyl-L-arginine methyl ester hydrochloride (TAME) and adenosine-5'-triphosphate (ATP) have been reported. Fluorescence spectrophotom...In this paper, some new results on the selective weak interaction between Na-4-tosyl-L-arginine methyl ester hydrochloride (TAME) and adenosine-5'-triphosphate (ATP) have been reported. Fluorescence spectrophotometry and Fourier transform infrared (FT-IR) spectroscopy were used to investigate this kind of weak interaction. In fluorescence experiments, obvious fluorescence quenching phenomena were observed when TAME was added, which indicated the weak interactions between TAME and ATP. It has been identified by fluorescence titration experiments that TAME exhibited high selectivity to ATP over ADP and AMP. FT-IR spectral results showed that an ATP-TAME adduct was formed. The experimental results indicated that the interaction sites were the guanidinium group of TAME main-chain and the γ-phosphate group of ATP, and the interaction took place through hydrogen bonding and electrostatic force. In addition, the effects of metal ions on the weak interaction between ATP and TAME, or between ATP and analogues of L-arginine were studied.展开更多
The influence of adding Fe_(2)O_(3) at the expense of Na_(2)O in sodium lead borate glasses on the structural,physical and electrical properties have been investigated.Results obtained from Fourier transform infrared(...The influence of adding Fe_(2)O_(3) at the expense of Na_(2)O in sodium lead borate glasses on the structural,physical and electrical properties have been investigated.Results obtained from Fourier transform infrared(FTIR)spectra indicated that Fe_(2)O_(3) plays an important role in converting three coordinated boron atoms[BO_(3)]to four coordinated boron atoms[BO4].The physical properties such as density and molar volume helped to evaluate the compact structure of the prepared glass samples due to presence of[BO4]groups.The increase of Fe_(2)O_(3)/Na_(2)O replacements led to increasing the microhardness values and decreasing the thermal expansion coefficients of the studied glasses.The increase of Fe_(2)O_(3)/Na_(2)O replacements generally decreased the AC conductivity.That decrease might be due to converting of the three coordinated boron atoms[BO_(3)]to four coordinated boron atoms[BO_(4)].Dielectric constants of the samples might be an indication of the distortion in the coordinated boron atoms.The obtained experimental data indicated the internal structure of glass network and the change of the structure of the samples from three[BO_(3)]to four coordinated boron atoms[BO4].展开更多
The ternary phosphate glass series(50-x)CaO-xCaF_(2)-50P_(2)O_(5)(x=0-20 mol%)were synthesized using melt quench technique.Structural,optical and mechanical properties were investigated with increase in CaF_(2) conten...The ternary phosphate glass series(50-x)CaO-xCaF_(2)-50P_(2)O_(5)(x=0-20 mol%)were synthesized using melt quench technique.Structural,optical and mechanical properties were investigated with increase in CaF_(2) content.Using X-ray diffraction(XRD),synthesized glasses were confirmed to be amorphous in nature.Replacement of oxygen ions by fluorine ions increased the values of density.Decrease in refractive index due to the low polarizability of fluorine ions in the glass matrix was observed.In Fourier transform infrared(FTIR)spectra,the slight variation in v_(as)(PO_(2))band position and intensity could be attributed to replacement of fluorine ions for oxygen ions in phosphate glass structure.These data were well supported by Raman spectra.Optical band gap energy increased from 3.44 eV to 3.64 eV with increase in CaF_(2) content,and Urbach energy decreased suggesting that the fluorine ions reduced the tail energy states in the band gap compared to the oxygen ions.Mechanical parameters such as Vickers hardness,fracture toughness and brittleness were evaluated from the Vickers micro indentation measurements.Increase in Vickers hardness,decrease in fracture toughness and increase in brittleness were observed with increase in CaF_(2) content.展开更多
基金supported by National Key Scientific Instrument and Equipment Development Project of China,Grant Nos.2013YQ220643the National 863 Program of China,Grant Nos.2014AA06A503.
文摘As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring system.In order to solve the problem of wavelength redundancy in full spectrum partial least squares(PLS)modeling for VOCs concentration analysis,a new method based on improved interval PLS(iPLS)integrated with Monte-Carlo sampling,called iPLS-MC method,was proposed to select optimal characteristic wavelengths of VOCs spectra.This method uses iPLS modeling to preselect the characteristic wavebands of the spectra and generates random wavelength combinations from the selected wavebands by Monte-Carlo sampling.The wavelength combination with the best prediction result in regression model is selected as the characteristic wavelengths of the spectrum.Different wavelength selection methods were built,respectively,on Fourier transform infrared(FTIR)spectra of ethylene and ethanol gas at different concentrations obtained in the laboratory.When the interval number of iPLS model is set to 30 and the Monte-Carlo sampling runs 1000 times,the characteristic wavelengths selected by iPLS-MC method can reduce from 8916 to 10,which occupies only 0.22%of the full spectrum wavelengths.While the RMSECV and correlation coefficient(Rc)for ethylene are 0.2977 and 0.9999 ppm,and those for ethanol gas are 0.2977 ppm and 0.9999.The experimental results show that the iPLS-MC method can select the optimal characteristic wavelengths of VOCs FTIR spectra stably and effectively,and the prediction performance of the regression model can be significantly improved and simplified by using characteristic wavelengths.
基金supported by the earmarked fund for China Agriculture Research System (2013–2017)the Chinese Outstanding Talents Program in Agricultural Sciences
文摘Dissolved organic matter(DOM) plays important roles in soil biogeochemistry activity and nutrients transportation in soils, but studies regarding the long-term effects of green manures on the content and structure of DOM in red paddy soil have not been reported yet. A long-term green manure experiment established in 1982 was utilized to test the DOM contents in different treatments, and the spectral characteristics of DOM were investigated by using ultraviolet-visible(UV-Vis) spectrometry and Fourier transform infrared(FTIR) spectrometry. The experiment included four cropping systems: ricerice-milk vetch(RRV), rice-rice-rape(RRP), rice-rice-ryegrass(RRG) and rice-rice-winter fallow(RRF), among them, milk vetch, rape, and ryegrass are popular winter green manure species in southern China. The results showed that the content of dissolved organic carbon(DOC), which is widely used to estimate the concentration of DOM, was significantly promoted after the incorporation of green manures compared with the other sampling stages. The contents of aromatic groups and the degree of humification of DOM increased in RRV and RRP, suggesting more complex compositions of the soil DOM after long-term application of milk vetch and rape. The contents of phenol, alcohol and carboxylic acid group at the mature stage of early rice were significantly higher than those at the stage of after green manures turned over, especially for the RRV treatment. The absorption ratio of FTIR indicated that winter plantation of rape increased the aromatic-C/aliphatic-C ratio, and ryegrass increased the aromatic-C/carboxyl-C ratio. In conclusion, long-term planting of milk vetch and rape as green manures increased the degree of aromaticity, humification and average molecular weight of DOM, and made the DOM more stable in red paddy soil.
基金Project supported by the Research Foundation of University of Catania, Italy (No. ORCT067410/2006)
文摘We characterized humic acids (HAs) and glycerol-extractable organic fractions (GEOFs) extracted from four Andisols, taken from comparable soil-climate conditions on the east side of Mount Etna. The soils were formed on old lava (about 9000 years ago), old tephra (about 8 700 years ago), recent lava (about 2 600 years ago) and recent tephra (about 3600 years ago). A part of the organic matter of the soils, deprived of HAs and fulvic acids (FAs), was isolated by glycerol extraction. The GEOF can not be extracted with alkaline solutions, probably because it is closely bound to the mineral component of the soil. The characterization of the extracted organic fraction was carried out using elementary and functional group analysis and Fourier transform infrared (FT-IR) spectroscopy. About 20 extractions were necessary to extract the HA and FA from the older soils and about 10 extractions to extract them from the younger soils. Data showed that the CEOFs had a greater ash content and a smaller N content, as well as a greater presence of aliphatic compounds and carboxylic groups as compared to the HA extracted from the same soil. The GEOFs extracted from younger soils also had a lower yield, ash and COOH-group content, and were more aliphatic than the GEOF extracted from older soils. Finally, the GEOFs were more closely bound to the amorphous component of the soil ('short-range' minerals) and consequently less subject to biodegradation.
文摘Bioaerosols exhibit significant broadband extinction performance and have vital impacts on climate change,optical detection,communication,disease transmission,and the development of optical attenuation materials.Microbial spores and microbial hyphae represent two primary forms of bioaerosol particles.However,a comprehensive investigation and comparison of their optical properties have not been conducted yet.In this paper,the spectra of spores and hyphae were tested,and the absorption peaks,component contents,and protein structural differences were compared.Accurate structural models were established,and the optical attenuation parameters were calculated.Aerosol chamber experiments were conducted to verify the optical attenuation performance of microbial spores and hyphae in the mid-infrared and far-infrared spectral bands.Results demonstrate that selecting spores and hyphae can significantly reduce the average transmittance from 21.2%to 6.4%in the mid-infrared band and from 31.3%to 19.6%in the far-infrared band within three minutes.The conclusions have significant implications for the selection of high-performance microbial optical attenuation materials as well as for the rapid detection of bioaerosol types in research on climate change and the spread of pathogenic aerosols.
基金Project supported by the National Natural Science Foundation of China (No. 90210027).Acknowledgments The authors especially thank Zhide Hu in Lanzhou University for kindly allowing the use of the RF-5301PC spectrofluorophotometer (Shimadzu) in this work and Wenying He in Lanzhou University for active discussion as well as zealous help during the fluorescence experiments.
文摘In this paper, some new results on the selective weak interaction between Na-4-tosyl-L-arginine methyl ester hydrochloride (TAME) and adenosine-5'-triphosphate (ATP) have been reported. Fluorescence spectrophotometry and Fourier transform infrared (FT-IR) spectroscopy were used to investigate this kind of weak interaction. In fluorescence experiments, obvious fluorescence quenching phenomena were observed when TAME was added, which indicated the weak interactions between TAME and ATP. It has been identified by fluorescence titration experiments that TAME exhibited high selectivity to ATP over ADP and AMP. FT-IR spectral results showed that an ATP-TAME adduct was formed. The experimental results indicated that the interaction sites were the guanidinium group of TAME main-chain and the γ-phosphate group of ATP, and the interaction took place through hydrogen bonding and electrostatic force. In addition, the effects of metal ions on the weak interaction between ATP and TAME, or between ATP and analogues of L-arginine were studied.
文摘The influence of adding Fe_(2)O_(3) at the expense of Na_(2)O in sodium lead borate glasses on the structural,physical and electrical properties have been investigated.Results obtained from Fourier transform infrared(FTIR)spectra indicated that Fe_(2)O_(3) plays an important role in converting three coordinated boron atoms[BO_(3)]to four coordinated boron atoms[BO4].The physical properties such as density and molar volume helped to evaluate the compact structure of the prepared glass samples due to presence of[BO4]groups.The increase of Fe_(2)O_(3)/Na_(2)O replacements led to increasing the microhardness values and decreasing the thermal expansion coefficients of the studied glasses.The increase of Fe_(2)O_(3)/Na_(2)O replacements generally decreased the AC conductivity.That decrease might be due to converting of the three coordinated boron atoms[BO_(3)]to four coordinated boron atoms[BO_(4)].Dielectric constants of the samples might be an indication of the distortion in the coordinated boron atoms.The obtained experimental data indicated the internal structure of glass network and the change of the structure of the samples from three[BO_(3)]to four coordinated boron atoms[BO4].
文摘The ternary phosphate glass series(50-x)CaO-xCaF_(2)-50P_(2)O_(5)(x=0-20 mol%)were synthesized using melt quench technique.Structural,optical and mechanical properties were investigated with increase in CaF_(2) content.Using X-ray diffraction(XRD),synthesized glasses were confirmed to be amorphous in nature.Replacement of oxygen ions by fluorine ions increased the values of density.Decrease in refractive index due to the low polarizability of fluorine ions in the glass matrix was observed.In Fourier transform infrared(FTIR)spectra,the slight variation in v_(as)(PO_(2))band position and intensity could be attributed to replacement of fluorine ions for oxygen ions in phosphate glass structure.These data were well supported by Raman spectra.Optical band gap energy increased from 3.44 eV to 3.64 eV with increase in CaF_(2) content,and Urbach energy decreased suggesting that the fluorine ions reduced the tail energy states in the band gap compared to the oxygen ions.Mechanical parameters such as Vickers hardness,fracture toughness and brittleness were evaluated from the Vickers micro indentation measurements.Increase in Vickers hardness,decrease in fracture toughness and increase in brittleness were observed with increase in CaF_(2) content.