Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilt...Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilton principle.Three typical electric boundary conditions are involved in the present model to characterize the fracture behaviors in various physical situations.A staggered algorithm is used to simulate the crack propagation.The polynomial splines over hierarchical T-meshes(PHT-splines)are adopted as the basis function,which owns the C1continuity.Systematic numerical simulations are performed to study the influence of the electric boundary conditions and the applied electric field on the fracture behaviors of piezoelectric materials.The electric boundary conditions may influence crack paths and fracture loads significantly.The present research may be helpful for the reliability evaluation of the piezoelectric structure in the future applications.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
The finite data estimates of the complex fourth-order moments of a signal consisting of random harmonics are analyzed. Conditions for the fourth-order stationarity and ergodicity are obtained. Explicit formulas for th...The finite data estimates of the complex fourth-order moments of a signal consisting of random harmonics are analyzed. Conditions for the fourth-order stationarity and ergodicity are obtained. Explicit formulas for the estimation error and its variance, as well as their limiting large sample values are derived. Finally, a special case relevant to cubic phase coupling is considered, and these results are stated for this case, the variance is shown to comprise an ergodic and a nonergodic part.展开更多
We consider the fourth-order nonlinear Schr?dinger equation(4NLS)(i?t+εΔ+Δ2)u=c1um+c2(?u)um-1+c3(?u)2um-2,and establish the conditional almost sure global well-posedness for random initial data in Hs(Rd)for s∈(sc-...We consider the fourth-order nonlinear Schr?dinger equation(4NLS)(i?t+εΔ+Δ2)u=c1um+c2(?u)um-1+c3(?u)2um-2,and establish the conditional almost sure global well-posedness for random initial data in Hs(Rd)for s∈(sc-1/2,sc],when d≥3 and m≥5,where sc:=d/2-2/(m-1)is the scaling critical regularity of 4NLS with the second order derivative nonlinearities.Our proof relies on the nonlinear estimates in a new M-norm and the stability theory in the probabilistic setting.Similar supercritical global well-posedness results also hold for d=2,m≥4 and d≥3,3≤m<5.展开更多
In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary rando...In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.展开更多
This work presents a comprehensive fourth-order predictive modeling (PM) methodology that uses the MaxEnt principle to incorporate fourth-order moments (means, covariances, skewness, kurtosis) of model parameters, com...This work presents a comprehensive fourth-order predictive modeling (PM) methodology that uses the MaxEnt principle to incorporate fourth-order moments (means, covariances, skewness, kurtosis) of model parameters, computed and measured model responses, as well as fourth (and higher) order sensitivities of computed model responses to model parameters. This new methodology is designated by the acronym 4<sup>th</sup>-BERRU-PM, which stands for “fourth-order best-estimate results with reduced uncertainties.” The results predicted by the 4<sup>th</sup>-BERRU-PM incorporates, as particular cases, the results previously predicted by the second-order predictive modeling methodology 2<sup>nd</sup>-BERRU-PM, and vastly generalizes the results produced by extant data assimilation and data adjustment procedures.展开更多
Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bound...Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .展开更多
This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and k...This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and kurtosis) of the optimally predicted distribution of model results and calibrated model parameters, by combining fourth-order experimental and computational information, including fourth (and higher) order sensitivities of computed model responses to model parameters. Underlying the construction of this fourth-order predictive modeling methodology is the “maximum entropy principle” which is initially used to obtain a novel closed-form expression of the (moments-constrained) fourth-order Maximum Entropy (MaxEnt) probability distribution constructed from the first four moments (means, covariances, skewness, kurtosis), which are assumed to be known, of an otherwise unknown distribution of a high-dimensional multivariate uncertain quantity of interest. This fourth-order MaxEnt distribution provides optimal compatibility of the available information while simultaneously ensuring minimal spurious information content, yielding an estimate of a probability density with the highest uncertainty among all densities satisfying the known moment constraints. Since this novel generic fourth-order MaxEnt distribution is of interest in its own right for applications in addition to predictive modeling, its construction is presented separately, in this first part of a two-part work. The fourth-order predictive modeling methodology that will be constructed by particularizing this generic fourth-order MaxEnt distribution will be presented in the accompanying work (Part-2).展开更多
Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the secon...Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method.展开更多
In this article,we first prove the existence and uniqueness of the solution to the stochastic generalized porous medium equation perturbed by Lévy process,and then show the exponential convergence of(pt)t≥0 to...In this article,we first prove the existence and uniqueness of the solution to the stochastic generalized porous medium equation perturbed by Lévy process,and then show the exponential convergence of(pt)t≥0 to equilibrium uniform on any bounded subset in H.展开更多
In this paper, we propose a new one-time one-key encryption algorithm based on the ergodicity of a skew tent chaotic map. We divide the chaotic trajectory into sub-intervals and map them to integers, and use this sche...In this paper, we propose a new one-time one-key encryption algorithm based on the ergodicity of a skew tent chaotic map. We divide the chaotic trajectory into sub-intervals and map them to integers, and use this scheme to encrypt plaintext and obtain ciphertext. In this algorithm, the plaintext information in the key is used, so different plaintexts or different total numbers of plaintext letters will encrypt different ciphertexts. Simulation results show that the performance and the security of the proposed encryption algorithm can encrypt plaintext effectively and resist various typical attacks.展开更多
Several existence theorems were established for a nonlinear fourth-order two-point boundary value problem with second derivative by using Leray-Schauder fixed point theorem, equivalent norm and technique on system of ...Several existence theorems were established for a nonlinear fourth-order two-point boundary value problem with second derivative by using Leray-Schauder fixed point theorem, equivalent norm and technique on system of integral equations. The main conditions of our results are local. In other words, the existence of the solution can be determined by considering the height of the nonlinear term on a bounded set. This class of problems usually describes the equilibrium state of an elastic beam which is simply supported at both ends.展开更多
In this work, we present a computational method for solving eigenvalue problems of fourth-order ordinary differential equations which based on the use of Chebychev method. The efficiency of the method is demonstrated ...In this work, we present a computational method for solving eigenvalue problems of fourth-order ordinary differential equations which based on the use of Chebychev method. The efficiency of the method is demonstrated by three numerical examples. Comparison results with others will be presented.展开更多
In this paper, we show that a positive recurrent ?uid queue is automatically V-uniformly ergodic for some function V ≥ 1 but never uniformly ergodic. This reveals a similarity of ergodicity between a ?uid queue and a...In this paper, we show that a positive recurrent ?uid queue is automatically V-uniformly ergodic for some function V ≥ 1 but never uniformly ergodic. This reveals a similarity of ergodicity between a ?uid queue and a quasi-birth-and-death process. As a byproduct of V-uniform ergodicity, we derive computable bounds on the exponential moments of the busy period.展开更多
A fourth-order convergence method of solving roots for nonlinear equation, which is a variant of Newton's method given. Its convergence properties is proved. It is at least fourth-order convergence near simple roots ...A fourth-order convergence method of solving roots for nonlinear equation, which is a variant of Newton's method given. Its convergence properties is proved. It is at least fourth-order convergence near simple roots and one order convergence near multiple roots. In the end, numerical tests are given and compared with other known Newton and Newton-type methods. The results show that the proposed method has some more advantages than others. It enriches the methods to find the roots of non-linear equations and it is important in both theory and application.展开更多
Under suitable conditions on h(x) and f(u), the authors show that the following boundary value problem has at least one positive solution. Moreover, the authors also establish several existence theorems of multiple po...Under suitable conditions on h(x) and f(u), the authors show that the following boundary value problem has at least one positive solution. Moreover, the authors also establish several existence theorems of multiple positive solutions.展开更多
This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classificati...This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classification results are presented, and some examples are given to show the main reduction procedure.展开更多
We exploit higher-order conditional symmetry to reduce initial-value problems for evolution equations toCauchy problems for systems of ordinary differential equations (ODEs).We classify a class of fourth-order evoluti...We exploit higher-order conditional symmetry to reduce initial-value problems for evolution equations toCauchy problems for systems of ordinary differential equations (ODEs).We classify a class of fourth-order evolutionequations which admit certain higher-order generalized conditional symmetries (GCSs) and give some examples to showthe main reduction procedure.These reductions cannot be derived within the framework of the standard Lie approach,which hints that the technique presented here is something essential for the dimensional reduction of evolu tion equations.展开更多
This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some...This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some previous result is extended.展开更多
To consider the effects of the interactions and interplay among microstructures, gradient-dependent models of second- and fourth-order are included in the widely used phenomenological Johnson-Cook model where the effe...To consider the effects of the interactions and interplay among microstructures, gradient-dependent models of second- and fourth-order are included in the widely used phenomenological Johnson-Cook model where the effects of strain-hardening, strain rate sensitivity, and thermal-softening are successfully described. The various parameters for 1006 steel, 4340 steel and S-7 tool steel are assigned. The distributions and evolutions of the local plastic shear strain and deformation in adiabatic shear band (ASB) are predicted. The calculated results of the second- and fourth- order gradient plasticity models are compared. S-7 tool steel possesses the steepest profile of local plastic shear strain in ASB, whereas 1006 steel has the least profile. The peak local plastic shear strain in ASB for S-7 tool steel is slightly higher than that for 4340 steel and is higher than that for 1006 steel. The extent of the nonlinear distribution of the local plastic shear deformation in ASB is more apparent for the S-7 tool steel, whereas it is the least apparent for 1006 steel. In fourth-order gradient plasticity model, the profile of the local plastic shear strain in the middle of ASB has a pronounced plateau whose width decreases with increasing average plastic shear strain, leading to a shrink of the portion of linear distribution of the profile of the local plastic shear deformation. When compared with the sec- ond-order gradient plasticity model, the fourth-order gradient plasticity model shows a lower peak local plastic shear strain in ASB and a higher magnitude of plastic shear deformation at the top or base of ASB, which is due to wider ASB. The present numerical results of the second- and fourth-order gradient plasticity models are consistent with the previous numerical and experimental results at least qualitatively.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12072297 and12202370)the Natural Science Foundation of Sichuan Province of China(No.24NSFSC4777)。
文摘Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilton principle.Three typical electric boundary conditions are involved in the present model to characterize the fracture behaviors in various physical situations.A staggered algorithm is used to simulate the crack propagation.The polynomial splines over hierarchical T-meshes(PHT-splines)are adopted as the basis function,which owns the C1continuity.Systematic numerical simulations are performed to study the influence of the electric boundary conditions and the applied electric field on the fracture behaviors of piezoelectric materials.The electric boundary conditions may influence crack paths and fracture loads significantly.The present research may be helpful for the reliability evaluation of the piezoelectric structure in the future applications.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
文摘The finite data estimates of the complex fourth-order moments of a signal consisting of random harmonics are analyzed. Conditions for the fourth-order stationarity and ergodicity are obtained. Explicit formulas for the estimation error and its variance, as well as their limiting large sample values are derived. Finally, a special case relevant to cubic phase coupling is considered, and these results are stated for this case, the variance is shown to comprise an ergodic and a nonergodic part.
基金supported by the NationalNatural Science Foundation of China(12001236)the Natural Science Foundation of Guangdong Province(2020A1515110494)。
文摘We consider the fourth-order nonlinear Schr?dinger equation(4NLS)(i?t+εΔ+Δ2)u=c1um+c2(?u)um-1+c3(?u)2um-2,and establish the conditional almost sure global well-posedness for random initial data in Hs(Rd)for s∈(sc-1/2,sc],when d≥3 and m≥5,where sc:=d/2-2/(m-1)is the scaling critical regularity of 4NLS with the second order derivative nonlinearities.Our proof relies on the nonlinear estimates in a new M-norm and the stability theory in the probabilistic setting.Similar supercritical global well-posedness results also hold for d=2,m≥4 and d≥3,3≤m<5.
基金supported by the Shenzhen sustainable development project:KCXFZ 20201221173013036 and the National Natural Science Foundation of China(91746107).
文摘In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.
文摘This work presents a comprehensive fourth-order predictive modeling (PM) methodology that uses the MaxEnt principle to incorporate fourth-order moments (means, covariances, skewness, kurtosis) of model parameters, computed and measured model responses, as well as fourth (and higher) order sensitivities of computed model responses to model parameters. This new methodology is designated by the acronym 4<sup>th</sup>-BERRU-PM, which stands for “fourth-order best-estimate results with reduced uncertainties.” The results predicted by the 4<sup>th</sup>-BERRU-PM incorporates, as particular cases, the results previously predicted by the second-order predictive modeling methodology 2<sup>nd</sup>-BERRU-PM, and vastly generalizes the results produced by extant data assimilation and data adjustment procedures.
文摘Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .
文摘This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and kurtosis) of the optimally predicted distribution of model results and calibrated model parameters, by combining fourth-order experimental and computational information, including fourth (and higher) order sensitivities of computed model responses to model parameters. Underlying the construction of this fourth-order predictive modeling methodology is the “maximum entropy principle” which is initially used to obtain a novel closed-form expression of the (moments-constrained) fourth-order Maximum Entropy (MaxEnt) probability distribution constructed from the first four moments (means, covariances, skewness, kurtosis), which are assumed to be known, of an otherwise unknown distribution of a high-dimensional multivariate uncertain quantity of interest. This fourth-order MaxEnt distribution provides optimal compatibility of the available information while simultaneously ensuring minimal spurious information content, yielding an estimate of a probability density with the highest uncertainty among all densities satisfying the known moment constraints. Since this novel generic fourth-order MaxEnt distribution is of interest in its own right for applications in addition to predictive modeling, its construction is presented separately, in this first part of a two-part work. The fourth-order predictive modeling methodology that will be constructed by particularizing this generic fourth-order MaxEnt distribution will be presented in the accompanying work (Part-2).
基金The National Natural Science Foundation of China(No.60972001)the National Key Technology R&D Program of China during the 11th Five-Year Period(No.2009BAG13A06)
文摘Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method.
基金supported by the National Science Foundation of China(1067121290820302)the National Science Foundation of Hunan Province
文摘In this article,we first prove the existence and uniqueness of the solution to the stochastic generalized porous medium equation perturbed by Lévy process,and then show the exponential convergence of(pt)t≥0 to equilibrium uniform on any bounded subset in H.
基金supported by the National Natural Science Foundation of China (Grant Nos.61173183,60973152,and 60573172)the Superior University Doctor Subject Special Scientific Research Foundation of China (Grant No.20070141014)the Natural Science Foundation of Liaoning Province,China (Grant No.20082165)
文摘In this paper, we propose a new one-time one-key encryption algorithm based on the ergodicity of a skew tent chaotic map. We divide the chaotic trajectory into sub-intervals and map them to integers, and use this scheme to encrypt plaintext and obtain ciphertext. In this algorithm, the plaintext information in the key is used, so different plaintexts or different total numbers of plaintext letters will encrypt different ciphertexts. Simulation results show that the performance and the security of the proposed encryption algorithm can encrypt plaintext effectively and resist various typical attacks.
文摘Several existence theorems were established for a nonlinear fourth-order two-point boundary value problem with second derivative by using Leray-Schauder fixed point theorem, equivalent norm and technique on system of integral equations. The main conditions of our results are local. In other words, the existence of the solution can be determined by considering the height of the nonlinear term on a bounded set. This class of problems usually describes the equilibrium state of an elastic beam which is simply supported at both ends.
文摘In this work, we present a computational method for solving eigenvalue problems of fourth-order ordinary differential equations which based on the use of Chebychev method. The efficiency of the method is demonstrated by three numerical examples. Comparison results with others will be presented.
基金Supported by the National Natural Science Foundation of China(11571372,11771452)the Innovation Program of Central South University(10900-50601010)
文摘In this paper, we show that a positive recurrent ?uid queue is automatically V-uniformly ergodic for some function V ≥ 1 but never uniformly ergodic. This reveals a similarity of ergodicity between a ?uid queue and a quasi-birth-and-death process. As a byproduct of V-uniform ergodicity, we derive computable bounds on the exponential moments of the busy period.
基金Foundation item: Supported by the National Science Foundation of China(10701066) Supported by the National Foundation of the Education Department of Henan Province(2008A110022)
文摘A fourth-order convergence method of solving roots for nonlinear equation, which is a variant of Newton's method given. Its convergence properties is proved. It is at least fourth-order convergence near simple roots and one order convergence near multiple roots. In the end, numerical tests are given and compared with other known Newton and Newton-type methods. The results show that the proposed method has some more advantages than others. It enriches the methods to find the roots of non-linear equations and it is important in both theory and application.
文摘Under suitable conditions on h(x) and f(u), the authors show that the following boundary value problem has at least one positive solution. Moreover, the authors also establish several existence theorems of multiple positive solutions.
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classification results are presented, and some examples are given to show the main reduction procedure.
基金National Natural Science Foundation of China under Grant Nos.10447007 and 10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘We exploit higher-order conditional symmetry to reduce initial-value problems for evolution equations toCauchy problems for systems of ordinary differential equations (ODEs).We classify a class of fourth-order evolutionequations which admit certain higher-order generalized conditional symmetries (GCSs) and give some examples to showthe main reduction procedure.These reductions cannot be derived within the framework of the standard Lie approach,which hints that the technique presented here is something essential for the dimensional reduction of evolu tion equations.
基金The 985 Program of Jilin Universitythe Science Research Foundation for Excellent Young Teachers of College of Mathematics at Jilin University
文摘This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some previous result is extended.
基金Item Sponsored by Educational Department of Liaoning Province of China (2004F052)
文摘To consider the effects of the interactions and interplay among microstructures, gradient-dependent models of second- and fourth-order are included in the widely used phenomenological Johnson-Cook model where the effects of strain-hardening, strain rate sensitivity, and thermal-softening are successfully described. The various parameters for 1006 steel, 4340 steel and S-7 tool steel are assigned. The distributions and evolutions of the local plastic shear strain and deformation in adiabatic shear band (ASB) are predicted. The calculated results of the second- and fourth- order gradient plasticity models are compared. S-7 tool steel possesses the steepest profile of local plastic shear strain in ASB, whereas 1006 steel has the least profile. The peak local plastic shear strain in ASB for S-7 tool steel is slightly higher than that for 4340 steel and is higher than that for 1006 steel. The extent of the nonlinear distribution of the local plastic shear deformation in ASB is more apparent for the S-7 tool steel, whereas it is the least apparent for 1006 steel. In fourth-order gradient plasticity model, the profile of the local plastic shear strain in the middle of ASB has a pronounced plateau whose width decreases with increasing average plastic shear strain, leading to a shrink of the portion of linear distribution of the profile of the local plastic shear deformation. When compared with the sec- ond-order gradient plasticity model, the fourth-order gradient plasticity model shows a lower peak local plastic shear strain in ASB and a higher magnitude of plastic shear deformation at the top or base of ASB, which is due to wider ASB. The present numerical results of the second- and fourth-order gradient plasticity models are consistent with the previous numerical and experimental results at least qualitatively.