期刊文献+
共找到1,079篇文章
< 1 2 54 >
每页显示 20 50 100
SiRAP2-12,a Positive Regulatory Factor,Effectively Improves the Waterlogging Tolerance of Foxtail Millet(Setaria italica)
1
作者 Xueyan Xia Xiaohong Fu +10 位作者 Yu Zhao Jihan Cui Nuoya Xiao Jingxin Wang Yiwei Lu Meihong Huang Cheng Chu Jia Zhang Mengxin Yang Shunguo Li Jianfeng Liu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期445-465,共21页
Foxtail millet(Setaria italica)growth was inhibited because of waterlogging stress,which has caused yield reduc-tion.ERF family plays an important role to plant adversity tolerance.In our study,we obtained 19,819 diff... Foxtail millet(Setaria italica)growth was inhibited because of waterlogging stress,which has caused yield reduc-tion.ERF family plays an important role to plant adversity tolerance.In our study,we obtained 19,819 differential expressed genes(DEGs)between the two treatments based on the RNA-seq sequencing of foxtail millet of water-logging stress.Furthermore,a total of 28 ERF family members were obtained,which have a complete open read-ing frame.We studied the evolution and function of SiERF family and how they affected the waterlogging tolerance.It was found that SiERF1A/B/C(GenBank ID:OR775217,OR775219,OR775218)and SiRAP2-12(GenBank ID:OR775216)have similar functions to the known waterlogging tolerance genes of other plants.Among them,the SiRAP2-12 expression was obviously significantly up-regulated in foxtail millet after 5d water-logging stress.After SiRAP2-12 was silenced,the activity of defense enzymes in millet decreased significantly.In details,superoxide dismutase(SOD),catalase(CAT)and peroxidase(POD),the osmotic regulator proline(Pro),and the activity of the anaerobic respiratory enzyme alcohol dehydrogenase(ADH)content were decreased by 78.61%,29.52%,79.95%,19.41%and 54.77%,respectively.In contrast,the relative electrical conductivity contents(REC),malondialdehyde(MDA),and hydrogen peroxide(H_(2)O_(2))of the foxtail millet subjected to virus-induced gene silencing clearly increased by 1.03-fold,36.09%,and 15.21%,respectively.The content of sodium(Na^(+))in the SiRAP2-12-silenced foxtail millet also increased,but that of potassium(K^(+))decreased.Interestingly,we found that ethylene content was significantly reduced.Further,the SiAOC1 expression,an essential gene for ethylene synthesis,was inhibited in SiRAP2-12-silenced foxtail millet after waterlogging stress.Taken together,we hypothesized that SiRAP2-12 might be a positive regulator of millet tolerance to waterlogging stress. 展开更多
关键词 foxtail millet WATERLOGGING SiRAP2-12 VIGS ETHYLENE
下载PDF
Integrated genomic and transcriptomic analysis reveals genes associated with plant height of foxtail millet
2
作者 Mengyuan Zhu Qiang He +14 位作者 Mingjie Lyu Tiantian Shi Qian Gao Hui Zhi Huan Wang Guanqing Jia Sha Tang Xiliu Cheng Rui Wanga Andi Xu Haigang Wang Zhijun Qiao Jun Liu Xianmin Diao Ying Gao 《The Crop Journal》 SCIE CSCD 2023年第2期593-604,共12页
Foxtail millet(Setaria italica)is an important C4 model crop;however,due to its high-density planting and high stature,lodging at the filling stage resulted in a serious reduction in yield and quality.Therefore,it is ... Foxtail millet(Setaria italica)is an important C4 model crop;however,due to its high-density planting and high stature,lodging at the filling stage resulted in a serious reduction in yield and quality.Therefore,it is imperative to identify and deploy the genes controlling foxtail millet plant height.In this study,we used a semi-dwarf line 263A and an elite high-stalk breeding variety,Chuang 29 to construct an F2 population to identify dwarf genes.We performed transcriptome analysis(RNA-seq)using internode tissues sampled at three jointing stages of 263A and Chuang 29,as well as bulk segregant analysis(BSA)on their F2 population.A total of 8918 differentially expressed genes(DEGs)were obtained from RNA-seq analysis,and GO analysis showed that DEGs were enriched in functions such as‘‘gibberellin metabolic process”and‘‘oxidoreductase activity”,which have previously been shown to be associated with plant height.A total 593 mutated genes were screened by BSA-seq method.One hundred and seventy-six out of the 593 mutated genes showed differential expression levels between the two parental lines,and seven genes not only showed differential expression in two or three internode tissues but also showed high genomic variation in coding regions,which indicated they play a crucial role in plant height determination.Among them,we found a gibberellin biosynthesis related GA20 oxidase gene(Seita.5G404900),which had a single-base at the third exon,leading to the frameshift mutation at 263A.Cleaved amplified polymorphic sequence assay and association analysis proved the single-base in Seita.5G404900 co-segregated with dwarf phenotype in two independent F2 populations planted in entirely different environments.Taken together,the candidate genes identified in this study will help to elucidate the genetic basis of foxtail millet plant height,and the molecular marker will be useful for marker-assisted dwarf breeding. 展开更多
关键词 foxtail millet Plant height Transcriptome analysis Bulk segregant analysis Functional markers Association analysis
下载PDF
Salt stress responses in foxtail millet:Physiological and molecular regulation
3
作者 Changai Wu Meng Zhang +2 位作者 Yifan Liang Lei Zhang Xianmin Diao 《The Crop Journal》 SCIE CSCD 2023年第4期1011-1021,共11页
Foxtail millet(Setaria italica L.),a member of the Paniceae family,is a temperate and tropical grass species that is widely cultivated on the Eurasian continent.It is Chinese in origin and possesses a small genome,sho... Foxtail millet(Setaria italica L.),a member of the Paniceae family,is a temperate and tropical grass species that is widely cultivated on the Eurasian continent.It is Chinese in origin and possesses a small genome,short growth cycle,and strong natural abiotic stress resistance.Elucidating the mechanism of millet tolerance to salt stress is becoming increasingly important with increasing soil salinization limiting crop productivity.The responses and mechanisms of tolerance to salt stress from other model plants such as Arabidopsis and rice,were compared with those from foxtail millet to summarize current research on responses to salt stress.Numerous processes are involved in these processes,including physiological reactions,sensing,signaling,and control at the transcriptional,post-transcriptional,and epigenetic levels.To increase crop productivity and agricultural sustainability,a variety of technologies can be used to investigate how salt tolerance is mediated by physiological and molecular processes in foxtail millet. 展开更多
关键词 foxtail millet SALINITY Physiological responses Molecular regulation Crop productivity
下载PDF
Genetic variation of yellow pigment and its components in foxtail millet(Setaria italica(L.) P.Beauv.) from different eco-regions in China 被引量:15
4
作者 YANG Yan-bing JIA Guan-qing +10 位作者 DENG Li-gang QIN Ling CHEN Er-ying CONG Xin-jun ZOU Ren-feng WANG Hai-lian ZHANG Hua-wen LIU Bin GUAN Yan-an DIAO Xian-min YIN Yan-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第11期2459-2469,共11页
Kernel color is an important trait for assessing the commercial and nutritional quality of foxtail millet. Yellow pigment content (YPC) and carotenoid components (lutein and zeaxanthin) of 270 foxtail millet acces... Kernel color is an important trait for assessing the commercial and nutritional quality of foxtail millet. Yellow pigment content (YPC) and carotenoid components (lutein and zeaxanthin) of 270 foxtail millet accessions, including 50 landraces and 220 improved cultivars, from four different eco-regions in China were surveyed using spectrophotometry and high performance liquid chromatography methods. Results indicated that YPC had rich variance, ranging from 1.91 to 28.54 mg kg-1, with an average value of 17.80 mg kg-1. The average YPC of improved cultivars (18.31 mg kg-1) was significantly higher than that of landraces (15.51 mg kg-l). The YPC in cultivars from the Loess Plateau spring sowing region (LPSSR) was the highest (20.59 mg kg-~), followed by the North China summer sowing region (NCSSR, 18.25 mg kg-1), the northeast spring sowing region (NSSR, 17.25 mg kg-1), and the Inner Mongolia Plateau spring sowing region (IMPSSR, 13.92 mg kg-1). The variation coefficients of YPC in cultivars from NSSR, LPSSR, and IMPSSR were higher than that from NCSSR. A similar carotenoid profile was also obtained for 270 foxtail millet cultivars. Lutein and zeaxanthin accounted for approximately 55-65% of YPC in accessions. The lutein content was higher than zeaxanthin content in all cultivars. The ratio of lutein to zeaxanthin ranged from 1.51 to 6.06 with an average of 3.34. YPC was positively correlated with lutein (r=0.935, P〈0.01), zeaxanthin (r=0.808, P〈0.01 ), and growth duration (t=0.488, P〈0.01 ), whereas it was negatively correlated with grain protein (t=-0.332, P〈0.01) and 1 000-kernel weight (t=-0.153, P〈0.05). Our study is useful for screening and selecting cultivars with high levels of yellow pigment and for enhancing phytochemical concentrations in breeding programs. 展开更多
关键词 foxtail millet yellow pigment LUTEIN ZEAXANTHIN eco-regions
下载PDF
Genetic Analysis and Preliminary Mapping of a Highly Male-Sterile Gene in Foxtail Millet(Setaria italica L.Beauv.) Using SSR Markers 被引量:7
5
作者 WANG Jun WANG Zhi-lan +8 位作者 YANG Hui-qing YUAN Feng GUO Er-hu TIAN Gang AN Yuan-huai LI Hui-xia WANG Yu-wen DIAO Xian-min GUO Ping-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第12期2143-2148,共6页
Breeding of male-sterile lines has become the mainstream for the heterosis utilization in foxtail millet,but the genetic basis of most male-sterile lines used for the hybrid is still an area to be elucidated.In this s... Breeding of male-sterile lines has become the mainstream for the heterosis utilization in foxtail millet,but the genetic basis of most male-sterile lines used for the hybrid is still an area to be elucidated.In this study,a highly male-sterile line Gao146A was investigated.Genetic analysis indicated that the highly male-sterile phenotype was controlled by a single recessive gene a single recessive gene.Using F 2 population derived from cross Gao146A/K103,one gene controlling the highly male- sterility,tentatively named as ms1,which linked to SSR marker b234 with genetic distance of 16.7 cM,was mapped on the chromosome VI.These results not only laid the foundation for fine mapping of this highly male-sterile gene,but also helped to accelerate the improvement of highly male-sterile lines by using molecular marker assisted breeding method. 展开更多
关键词 foxtail millet(Setaria italic L.Beauv.) highly male-sterility gene mapping SSR marker
下载PDF
The NAC-like transcription factor Si NAC110 in foxtail millet(Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway 被引量:5
6
作者 XIE Li-na CHEN Ming +7 位作者 MIN Dong-hong FENG Lu XU Zhao-shi ZHOU Yong-bin XU Dong-bei LI Lian-cheng MA You-zhi ZHANG Xiao-hong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第3期559-571,共13页
Foxtail millet(Setaria italica(L.)P.Beauv)is a naturally stress tolerant crop.Compared to other gramineous crops,it has relatively stronger drought and lower nutrition stress tolerance traits.To date,the scope of ... Foxtail millet(Setaria italica(L.)P.Beauv)is a naturally stress tolerant crop.Compared to other gramineous crops,it has relatively stronger drought and lower nutrition stress tolerance traits.To date,the scope of functional genomics research in foxtail millet(S.italic L.)has been quite limited.NAC(NAM,ATAF1/2 and CUC2)-like transcription factors are known to be involved in various biological processes,including abiotic stress responses.In our previous foxtail millet(S.italic L.)RNA seq analysis,we found that the expression of a NAC-like transcription factor,SiNAC110,could be induced by drought stress;additionally,other references have reported that SiNAC110 expression could be induced by abiotic stress.So,we here selected SiNAC110 for further characterization and functional analysis.First,the predicted SiNAC110 protein encoded indicated SiNAC110 has a conserved NAM(no apical meristem)domain between the 11–139 amino acid positions.Phylogenetic analysis then indicated that SiNAC110 belongs to subfamily III of the NAC gene family.Subcellular localization analysis revealed that the SiNAC110-GFP fusion protein was localized to the nucleus in Arabidopsis protoplasts.Gene expression profiling analysis indicated that expression of SiNAC110 was induced by dehydration,high salinity and other abiotic stresses.Gene functional analysis using SiNAC110 overexpressed Arabidopsis plants indicated that,under drought and high salt stress conditions,the seed germination rate,root length,root surface area,fresh weight,and dry weight of the SiNAC110 overexpressed lines were significantly higher than the wild type(WT),suggesting that the SiNAC110 overexpressed lines had enhanced tolerance to drought and high salt stresses.However,overexpression of SiN AC110 did not affect the sensitivity of SiNAC110 overexpressed lines to abscisic acid(ABA)treatment.Expression analysis of genes involved in proline synthesis,Na+/K+transport,drought responses,and aqueous transport proteins were higher in the SiNAC110overexpressed lines than in the WT,whereas expression of ABA-dependent pathway genes did not change.These results indicated that overexpression of SiNAC110 conferred tolerance to drought and high salt stresses,likely through influencing the regulation of proline biosynthesis,ion homeostasis and osmotic balance.Therefore,SiNAC110 appears to function in the ABA-independent abiotic stress response pathway in plants. 展开更多
关键词 foxtail millet (Setaria italica (L.) NAC-like transcription factor drought stress high salt stress ABA-independent pathway
下载PDF
Assessment of Genetic Relationship of Foxtail Millet with Its Wild Ancestor and Close Relatives by ISSR Markers 被引量:2
7
作者 LI Wei ZHI Hui +2 位作者 WANG Yong-fang LI Hai-quan DIAO Xian-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第4期556-566,共11页
Inter simple sequence repeat(ISSR) analysis was applied to samples of foxtail millet and its wild ancestor and other close relatives of the genus Setaria in order to detect domestication-related geographical structu... Inter simple sequence repeat(ISSR) analysis was applied to samples of foxtail millet and its wild ancestor and other close relatives of the genus Setaria in order to detect domestication-related geographical structure and phylogenetic relationship of those species.Eighty-one accessions of nine Setaria species that originated from different regions were used in this study.Fourteen out of the 27 ISSR primers screened amplified successfully and a total of 156 markers were scored for all the accessions,with a high level of polymorphism being detected.The dendrogram based on UPGMA cluster analysis showed clear geographic structure among foxtail millet and its wild ancestor green foxtail,which implies that northern China is the domestication center for both the Chinese and European foxtail millet landraces used in this study.This result did not support the hypothesis that China and Europe are independent domestication centers for foxtail millet proposed by several previous studies based on morphological and isozyme data.The dendrogram also clearly classified the Setaria sample used into two groups,a viridis and a pumila groups.The viridis group was composed of S.viridis,S.italica,S.faberii,S.verticillata,S.leucopila,and S.queenslandica,and the pumila group consisted of S.parviflora and S.pumila,which is consistent with the recently proposed hypothesis of multiple origin of Setaria species.The phylogenetic relationships among different species are discussed. 展开更多
关键词 SETARIA foxtail millet ISSR DOMESTICATION phylogenetic relationship
下载PDF
Influences of four processing methods on main nutritional components of foxtail millet: A review 被引量:4
8
作者 Tongshuai Yang Sen Ma +2 位作者 Jingke Liu Binghua Sun Xiaoxi Wang 《Grain & Oil Science and Technology》 2022年第3期156-165,共10页
Foxtail millet, originated from China and now cultivated worldwide, is a kind of high dietary fiber whole grain food, and has a high level of vitamins and proteins. Furthermore, foxtail millet has many positive effect... Foxtail millet, originated from China and now cultivated worldwide, is a kind of high dietary fiber whole grain food, and has a high level of vitamins and proteins. Furthermore, foxtail millet has many positive effects on the adjuvant treatment of diabetes, cancer, and cardiovascular diseases because of the abundance in polyphenols. Nonetheless, foxtail millet has poor processing characteristics due to the absence of gluten, restricting the development of foxtail millet products. Studies have demonstrated that heat-moisture treatment, extrusion, superfine grinding, and microbial fermentation are promising methods to improve the processing qualities of foxtail millet. Heat-moisture treatment is helpful to increase the content of resistant starch but has less influence on other components, further reduce the GI value of foxtail millet. The extrusion has positive effects on improving the solubility of foxtail millet starch and increasing the contents of polyunsaturated fatty acid, linoleic and linolenic acids, and adverse effects on reducing the solubility of foxtail millet proteins and causing losses of nutrients due to Maillard reaction. Superfine grinding can reduce the particle size of foxtail millet to obtain a better mouthfeel of foxtail millet products. The superfine foxtail millet flour has better solubility, higher freeze-thaw stability, and lower gelatinization temperature. Microbial fermentation contributes positively to reducing the molecular weight and retrogradation value of foxtail millet starch, degrading rapidly digested starch, and improving the digestibility of foxtail millet protein. This paper briefly introduced the effects of different processing methods on foxtail millet nutrients, aiming to provide references for increasing the variety and improving the quality of foxtail millet products. 展开更多
关键词 foxtail millet Heat-moisture treatment EXTRUSION Superfine grinding Microbial fermentation NUTRIENTS Health food
下载PDF
Identification of blast-resistance loci through genome-wide association analysis in foxtail millet(Setaria italica (L.)Beauv.) 被引量:2
9
作者 LI Zhi-jiang JIA Guan-qing +8 位作者 LI Xiang-yu LI Yi-chu ZHI Hui TANG Sha MA Jin-feng ZHANG Shuo LI Yan-dong SHANG Zhong-lin DIAO Xian-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第8期2056-2064,共9页
Blast disease caused by the fungus Magnaporthe grisea results in significant yield losses of cereal crops across the world.To date,very few regulatory genes contributing to blast resistance in grass species have been ... Blast disease caused by the fungus Magnaporthe grisea results in significant yield losses of cereal crops across the world.To date,very few regulatory genes contributing to blast resistance in grass species have been identified and the genetic basis of blast resistance in cereals remains elusive.Here,a core collection of foxtail millet(Setaria italica)containing 888 accessions was evaluated through inoculation with the blast strain HN-1 and a genome-wide association study(GWAS)was performed to detect regulators responsible for blast disease resistance in foxtail millet.The phenotypic variation of foxtail millet accessions inoculated with the blast strain HN-1 indicated that less than 1.60% of the samples were highly resistant,35.25% were moderately resistant,57.09% were moderately susceptible,and 6.08% were highly susceptible.The geographical pattern of blast-resistant samples revealed that a high proportion of resistant accessions were located in lower latitude regions where the foxtail millet growing season has higher rain precipitation.Using 720000 SNP markers covering the Setaria genome,GWAS showed that two genomic loci from chromosomes 2 and 9 were significantly associated with blast disease resistance in foxtail millet.Finally,eight putative genes were identified using rice blast-related transcriptomic data.The results of this work lay a foundation for the foxtail millet blast resistance biology and provide guidance for breeding practices in this promising crop species and other cereals. 展开更多
关键词 foxtail millet blast resistance core collection GWAS
下载PDF
Foxtail millet supplementation improves glucose metabolism and gut microbiota in rats with high-fat diet/streptozotocin-induced diabetes 被引量:3
10
作者 Xin Ren Linxuan Wang +6 位作者 Zenglong Chen Min Zhang Dianzhi Hou Yong Xue Xianmin Diao Ruihai Liu Qun Shen 《Food Science and Human Wellness》 SCIE 2022年第1期119-128,共10页
Foxtail millet(FM)whole grain has received special attention in recent years.To confirm the hypoglycemic effects of FM,we investigated the effects of FM supplementation on glucose metabolism and gut microbiota in rats... Foxtail millet(FM)whole grain has received special attention in recent years.To confirm the hypoglycemic effects of FM,we investigated the effects of FM supplementation on glucose metabolism and gut microbiota in rats with high-fat diet/streptozotocin(HFD/STZ)-induced diabetes.Specifically,we fully assessed the blood biochemical profiles,pancreatic histopathology,insulin-glucagon immunofluorescence,short-chain fatty acids,and gut microbiota composition of rats with HFD/STZ-induced diabetes before and after FM supplementation.Results showed that both 30% and 48% FM supplementation significantly decreased concentrations of fasting blood glucose,60-min blood glucose,and blood triglycerides(P<0.05);additionally,48% FM supplementation significantly improved blood glucose tolerance and insulin resistance(P<0.05).However,FM supplementation could not effectively repair damage to β-cells over a short period of time.In addition,4 weeks of 48% FM supplementation siginificantly increased the relative abundance of Bifidobacterium and concentration of butyrate,suggesting that the hypoglycemic effects of FM supplementation might be partially mediated by gut microbiota.Collectively,we found a dose-dependent relationship between FM supplementation and improvement of blood glucose metabolism,but did not find a synergistic effect between FM supplementation and metformin(Met)treatment.Our findings provide further support that consuming more whole-grain FM might be beneficial to individuals suffering from type 2 diabetes. 展开更多
关键词 foxtail millet Glucose metabolism Gut microbiota Short-chain fatty acids
下载PDF
Nutrient Composition of Different Foxtail Millet Seeds 被引量:4
11
作者 Guangyu FAN Jincheng YUAN +9 位作者 Lina ZHANG Xiaojie LIU Xiaoming WANG Feng WANG Xiaolei FENG Guoliang SONG Haiying ZHANG Qian WANG Zhihai ZHAO Yinghui LIU 《Agricultural Biotechnology》 CAS 2018年第5期35-37,96,共4页
Ten millet cultivars from China and abroad were analyzed for their crude fat, amylose and amylopectin, crude protein and amino acid content. A wide variation was observed in amylopectin contain, ranging from 54.47% to... Ten millet cultivars from China and abroad were analyzed for their crude fat, amylose and amylopectin, crude protein and amino acid content. A wide variation was observed in amylopectin contain, ranging from 54.47% to 69.26%, while amylose content ranged from 11.26% to 23.22%. The average crude fat in all cultivates was 3.46%, and most cultivates ranged from 3.1% to 3.7%. Protein contents ranged from 8.61% to 15.54% with a mean value of 11.94%. For amino acid composition, the ten cultivates were particularly rich in leucine, and the mean was 34.57 mg/g. The millet cultivars were also high in glycine, glutamic acid and cysteine. Millet was known to be limiting in the essential amino lysine, and the mean was 5.18 mg/g. Other amino acids, tyrosine, histidine and arginine were also very low in the ten cultivars. In general, significant nutrient composition differences were observed between the different millet cultivars, and A2 (a kind of mother line of the hybrid millet) and hybrid millet registered a higher level of protein and amino acid composition which would be useful in millet breeding. 展开更多
关键词 foxtail millet Crude fat Amylose and amylopectin PROTEIN Amino acid composition
下载PDF
Comprehensive analysis of YABBY gene family in foxtail millet(Setaria italica)and functional characterization of SiDL 被引量:2
12
作者 GUO Jie ZHOU Xu-tao +4 位作者 DAI Ke-li YUAN Xiang-yang GUO Ping-yi SHI Wei-ping ZHOU Mei-xue 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第10期2876-2887,共12页
YABBY genes are plant-specific transcription factors(TFs)that function in plant growth and development.We investigated the functions of the YABBY genes in plants’stress tolerance by analyzing the YABBY genes in foxta... YABBY genes are plant-specific transcription factors(TFs)that function in plant growth and development.We investigated the functions of the YABBY genes in plants’stress tolerance by analyzing the YABBY genes in foxtail millet(Setaria italica)and studying their functions on plant growth and responses to different stresses.Eight YABBY genes were identified on five chromosomes,which showed strong relationships with YABBY genes in other monocot species.Phylogenetical Si YABs were classified into four clades:FIL/YAB3,YAB2,INO,and CRC.No monocot YABBY member was classified into the YAB5 clade.Four conserved motifs were identified,and motif 1 constituted the YABBY domain,whereas motifs 2 and 3 formed the C2-C2 region.Si YAB genes were highly expressed in reproductive tissues.Si DL,one of the Si YABs,was selected to be overexpressed in Arabidopsis thaliana to check the functions of the YABBY genes.Overexpression of Si DL in A.thaliana caused delayed flowering,leaf curling,and reduced seed size.In addition,Si DL acted as a negative regulator in plant response to salt stress.Our study provides information to assist in studying the YABBY gene functions in S.italica. 展开更多
关键词 DROOPING LEAF(DL) plant development foxtail millet
下载PDF
Identification of no pollen 1 provides a candidate gene for heterosis utilization in foxtail millet(Setaria italica L.) 被引量:1
13
作者 Wei Zhang Hui Zhi +5 位作者 Sha Tang Haoshan Zhang Yi Sui Guanqing Jia Chuanyin Wu Xianmin Diao 《The Crop Journal》 SCIE CSCD 2021年第6期1309-1319,共11页
Male sterility is a common biological phenomenon in plant kingdom and has been used to generate male-sterile lines, which are important genetic resources for commercial hybrid seed production. Although increasing numb... Male sterility is a common biological phenomenon in plant kingdom and has been used to generate male-sterile lines, which are important genetic resources for commercial hybrid seed production. Although increasing numbers of male-sterility genes have been identified in rice(Oryza sativa) and Arabidopsis(Arabidopsis thaliana), few male-sterility-related genes have been characterized in foxtail millet(Setaria italica). In this study, we isolated a male-sterile ethyl methanesulfonate-generated mutant in foxtail millet, no pollen 1(sinp1), which displayed abnormal Ubisch bodies, defective pollen exine and complete male sterility. Using bulk segregation analysis, we cloned SiNP1 and confirmed its function with CRISPR/Cas9 genome editing. SiNP1 encoded a putative glucose-methanol-choline oxidoreductase.Subcellular localization showed that the SiNP1 protein was preferentially localized to the endoplasmic reticulum and was predominantly expressed in panicle. Transcriptome analysis revealed that many genes were differentially expressed in the sinp1 mutant, some of which encoded proteins putatively involved in carbohydrate metabolism, fatty acid biosynthesis, and lipid transport and metabolism, which were closely associated with pollen wall development. Metabolome analysis revealed the disturbance of flavonoids metabolism and fatty acid biosynthesis in the mutant. In conclusion, identification of SiNP1 provides a candidate male-sterility gene for heterosis utilization in foxtail millet and gives further insight into the mechanism of pollen reproduction in plants. 展开更多
关键词 foxtail millet Setaria italica Male sterile No pollen 1 CRISPR/Cas9 Hybrid breeding
下载PDF
Tracking and Monitoring Leaf Development, Coupling Law and Regulation Techniques during Flowering Period of Hybrid Foxtail Millet (<i>Setaria italica</i>(L.) P. Beauv.) Parental Lines 被引量:1
14
作者 Qiang Li Dan Liu +5 位作者 Guoxing Ma Yanhua Shi Yanjiao Cui Xiaodong Zhang Suying Li Zhengli Liu 《Agricultural Sciences》 2021年第2期84-111,共28页
The determining factor of<em> Setaria italica </em>(L.) P. Beauv. is the coupling of its flowering stage and outcrossing rate which leads to low and unstable seed yields in self-pollinated foxtail millet h... The determining factor of<em> Setaria italica </em>(L.) P. Beauv. is the coupling of its flowering stage and outcrossing rate which leads to low and unstable seed yields in self-pollinated foxtail millet hybrids and thereby limits their large-scale application. In this study, Datong 27, Datong 29 and gu 83 were screened and identified through meticulous observations of their pollination habitats. High exposure rate, degree of exposure and plump of stigma are good factors to accept foreign pollen. Datong 27 and Datong 29 have some additional characteristics, such as long filaments and exposed and full anthers that contain a large amount of pollen. We transformed into a series of stigma-exposed and plump sterile lines that easily accepted exotic pollen. New restorer lines with anthers that were full of powder and exhibited quick recovery, which improved the parental lines’ heterosexual characteristics. By tracking and monitoring the leaf development of the new sterile and restorer lines, a coupling law of leaf development was determined and a series of flowering control measures were formulated. These factors ensured that the parental lines encounter one another during the flowering stage. By utilizing fertilizer and water, the vitality of the female stigma, amount of powder scattered and powder loosening time were prolonged, which increased hybrid seed yields from 1500 to 3000 kg/hm<sup>2</sup>. These findings were helpful in resolving the technical problems of seed production that restricted the propagation of foxtail millet hybrids and supporting future large-scale applications. 展开更多
关键词 foxtail millet HYBRIDS Leaf Age Coupling Law Flowering Regulation Seed Production Technology
下载PDF
Genetic Diversity and Classification of Chinese Elite Foxtail Millet [Setaria italica (L.) P. Beauv.] Revealed by Acid-PAGE Prolamin 被引量:1
15
作者 Guoxing Ma Qiang Li +4 位作者 Suying Li Zhengli Liu Yanjiao Cui Jing Zhang Dan Liu 《Agricultural Sciences》 2022年第3期404-428,共25页
Arid and semi-arid regions of China account for more than half of the country. Because of drought resistance and high nutritive value, elite foxtail millet (Setaria Italica (L.) P. Beauv.) is one of the most important... Arid and semi-arid regions of China account for more than half of the country. Because of drought resistance and high nutritive value, elite foxtail millet (Setaria Italica (L.) P. Beauv.) is one of the most important cereal crops in China. Evaluation of germplasm and genetic diversity of foxtail millet is still in its infancy, but prolamin could play an important role as a protein marker. To investigate the genetic diversity and population structure of foxtail millet from different ecological zones of China, 90 accessions of foxtail millet were collected from three major ecological areas: North, Northwest, and Northeast China. The prolamin contents were examined by acid polyacrylamide gel electrophoresis (acid-PAGE). Five to twenty-two prolamin bands appeared in tested varieties, of which were polymorphic, so prolamin patterns of foxtail millet varieties can be used in variety identification and evaluation. Structure analysis identified six groups, which matches their pedigree information but not their geographic origins. This indicated a high degree (87.78%) of consistency with a phylogenetic classification based on SSR. The results showed prolamin banding patterns were an effective method for analyzing foxtail millet genetic variability. 展开更多
关键词 foxtail millet [Setaria italica (L.) P. Beauv.] Seed Storage Protein Protein Polymorphism PROLAMIN
下载PDF
Development of a New Foxtail Millet Germplasm with Super Early Maturity and High Iron Content
16
作者 LIU Zheng-li SUN Shi-xian +5 位作者 CHENG Ru-hong HUANG Wen-sheng LIU Jun-xin QU Zhu-feng XIA Xue-yan SHI Zhi-gang 《Agricultural Sciences in China》 CAS CSCD 2006年第7期558-562,共5页
Super Early Maturation No.2 is a new foxtail millet germplasm developed by using the targeted-character-gene-bankbreeding method. It has several outstanding characteristics. (1) Super early maturity. It can normally... Super Early Maturation No.2 is a new foxtail millet germplasm developed by using the targeted-character-gene-bankbreeding method. It has several outstanding characteristics. (1) Super early maturity. It can normally mature in Bashang, Hebei Province, China, where the altitude is around 1400 meters, and it needs 1 650℃ of effective accumulated temperature in the growing period. (2) Millet is rich in iron. The iron content of the millet of Super Early Maturation No.2 is 54.10 mg·kg^-1, which is 62.0% higher than the average iron content of the foxtail millet varieties in China. (3) High crude fat content. Its crude fat content is 6.24%, which is 54.1% higher than the average content of foxtail millet varieties in China. (4) High crude protein content. The average of the crude protein content of all the foxtail millet varieties in China is 12.71%, only 5% varieties surpass 14%, however, the crude protein content of Super Early Maturation No.2 is 14.36%, which is rare in improved varieties of foxtail millet in China. (5) Overall characteristics are good. 展开更多
关键词 foxtail millet super early maturation rich in iron crude fat germplasm development
下载PDF
Genetics, Development, and Application of Cytoplasmic Herbicide Resistance in Foxtail Millet
17
作者 JI Gui-su DU Rui-heng +3 位作者 HOU Sheng-lin CHENG Ru-hong WANG Xin-yu ZHAO Xiu-ping 《Agricultural Sciences in China》 CAS CSCD 2007年第7期779-785,共7页
The effect of cytoplasmic herbicide resistant gene in millet plants was studied. The heterozygous populations and isogenic lines with homocaryotic alloplasmic genes were obtained by crossing and reciprocal crossing of... The effect of cytoplasmic herbicide resistant gene in millet plants was studied. The heterozygous populations and isogenic lines with homocaryotic alloplasmic genes were obtained by crossing and reciprocal crossing of cytoplasmic herbicide resistant plants with susceptive plants of foxtail millet. The characters of F1, F2, backcross and composite cross groups, and the growth and development of isogenic lines were compared. The cytoplasmic herbicide resistant gene slowed the development of seedling, delayed heading, and shortened the milking stage in the foxtail millet plant. Yield capacity and main agronomic characters were all affected by the cytoplasmic herbicide resistant gene in most of the backcross, composite cross, and F2 populations. However, there was stronger hybrid vigor in F1. The backcrosses, composite crosses, and F2 populations were widely separated and some of them had good characters similar to those of susceptive groups. The plant characters and development of foxtail millet were negatively affected by the cytoplasmic herbicide resistant gene. The authors proposed a method of using hybrid vigor to obtain high yield and avoid the negative effects of herbicide resistance cytoplasm in plant growth. The expected results could be obtained by selecting individuals in separate populations of fast developed seedlings, well-developed roots, and with capacities of early heading and fast milking. Guided by the principal mentioned above, many high yield lines and hybrid crosses of foxtail millet with herbicide resistant cytoplasm were obtained. 展开更多
关键词 foxtail millet [Setaria italic (L.) Bear.] cytoplasmic herbicide resistance GENETIC DEVELOPMENT application
下载PDF
The boron transporter SiBOR1 functions in cell wall integrity, cellular homeostasis, and panicle development in foxtail millet
18
作者 Hailong Wang Sha Tang +8 位作者 Hui Zhi Lihe Xing Haoshan Zhang Chanjuan Tang Enbo Wang Meicheng Zhao Guanqing Jia Baili Feng Xianmin Diao 《The Crop Journal》 SCIE CSCD 2022年第2期342-353,共12页
Boron(B) is an essential micronutrient for vascular plant growth. Both B deficiency and toxicity can impair tissue development in diverse plant species, but little is known about the effect of B on reproductive panicl... Boron(B) is an essential micronutrient for vascular plant growth. Both B deficiency and toxicity can impair tissue development in diverse plant species, but little is known about the effect of B on reproductive panicle development and grain yield. In this study, a mutant of Setaria italica exhibiting necrotic panicle apices was identified and designated as sibor1. Sequencing revealed a candidate gene, Si BOR1, with a G-to-A alteration at the seventh exon. Knockout transgenic lines generated by clustered regularly interspaced short palindromic repeats and their associated protein-9 also had necrotic panicles, verifying the function of Si BOR1. Si BOR1 encoded a membrane-localized B efflux transporter, co-orthologous to the rice BOR1 protein. Si BOR1 was dominantly expressed in panicles and displayed a distinct expression pattern from those of its orthologs in other species. The induced mutation in Si BOR1 caused a reduction in the B content of panicle primary branches, and B deficiency-associated phenotypes such as thicker cell walls and higher cell porosity compared with Yugu 1. Transcriptome analysis indicated that differentially expressed genes involved in cell wall biogenesis, jasmonic acid synthesis, and programmed cell death response pathways were enriched in sibor1. q PCR analysis identified several key genes, including phenylalanine ammonia-lyase(Si PAL) and jasmonate-ZIM-domain(Si JAZ) genes, responsive to B-deficient conditions. These results indicate that Si BOR1 helps to regulate panicle primary branch development to maintain grain yield in S. italica. Our findings shed light on molecular mechanisms underlying the relationship between B transport and plant development in S. italica. 展开更多
关键词 foxtail millet(Setaria italica) SiBOR1 Cell wall Panicle development Grain yield
下载PDF
AFLP Molecular Markers for Leaf Rust Resistance Genes in Foxtail Millet
19
作者 Li Zhiyong Dong Li +3 位作者 Bai Hui Wang Yongfang Quan Jianzhang Dong Zhiping 《Plant Diseases and Pests》 CAS 2015年第4期11-14,共4页
Foxtail millet is not only a very useful experimental crop, but also a fodder crop and a staple food of people who live on the marginal agricultural lands, and it supplies high-quality protein for food products and in... Foxtail millet is not only a very useful experimental crop, but also a fodder crop and a staple food of people who live on the marginal agricultural lands, and it supplies high-quality protein for food products and industrial materials. However, leaf rust greatly reduces foxtail millet yields in susceptible varieties when weather conditions favor rust spread and development. Therefore, it is necessary to use molecular markers detecting and marking resistance genes. Compared with other molecular markers, AFLP maker is more efficient and powerful in the study of foxtail millet. In this study, AFLP analysis of 131 F2 individuals was performed and three AFLP makers were found to be linked to the rust resistance gene, with the genetic distances of 9.2, 9.8 and 12.4 cM, respectively. Cloning of rust re- sistance genes is of great importance and meaning in studying rust resistance of foxtail millet in the future. Furthermore, we may convert specific AFLP markers into single locus PCR markers, such as sequence characterised amplified region (SCAR) markers or cleaved amplified polymorphic site (CAPS) markers. 展开更多
关键词 foxtail millet RUST AFLP marker Linkage map
下载PDF
Control Effects of Different Doses of MCPA-Na Against Weeds in Foxtail Millet Field
20
作者 Cao Xiaoning Wang Junjie +4 位作者 Liu Sichen Chen Ling Wang Haigang Tian Xiang Qiao Zhijun 《Plant Diseases and Pests》 CAS 2017年第1期24-26,38,共4页
[ Objective] The paper was compare the control effects of different doses of MCPA-Na on weeds in foxtail millet field. [ Method ] Different doses of MC- PA-Na were sprayed on foxtail millet field, while artificial wee... [ Objective] The paper was compare the control effects of different doses of MCPA-Na on weeds in foxtail millet field. [ Method ] Different doses of MC- PA-Na were sprayed on foxtail millet field, while artificial weeding and spraying water was designed as control. The strain control effect and fresh weight control effect were calculated. [Result]The strain control effect and fresh weight control effect of 2 250 g/hm^2 MCPA-Na at 25 and 40 d post spraying were the best, and the fresh weight control effects reached 84.19% and 87.23%, respectively. Compared to CK, the yield increase effect of 1 500 g/hm^2 was the best, and the yield increase rate was 54.31% ; followed by 1 125 g/hm^2. Generally, 1 500 g/hm^2 was the best dosage of MCPA-Na in foxtail millet production. [ Conclusion]The paper provided a theoretical basis for screening the best dose of herbicide in foxtail millet production. 展开更多
关键词 foxtail millet MCPA-Na Control effect
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部