The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of co...The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of convergence,and the asymptotic normality of the kernel-type estimator are discussed.Besides,we prove that the rate of convergence of the kernel-type estimator depends on the smoothness of the trend of the nonperturbed system.展开更多
In this paper, by constructing a coupling equation, we establish the Harnack type inequalities for stochastic differential equations driven by fractional Brownian motion with Markovian switching. The Hurst parameter H...In this paper, by constructing a coupling equation, we establish the Harnack type inequalities for stochastic differential equations driven by fractional Brownian motion with Markovian switching. The Hurst parameter H is supposed to be in(1/2, 1). As a direct application, the strong Feller property is presented.展开更多
Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the cla...Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the class of polar functions are studied. Our theorem 1 improves the previous results of Graversen and Legall. Theorem2 solves a problem of Legall (1987) on Brownian motion.展开更多
This paper deals with the problems of consistency and strong consistency of the maximum likelihood estimators of the mean and variance of the drift fractional Brownian motions observed at discrete time instants. Both ...This paper deals with the problems of consistency and strong consistency of the maximum likelihood estimators of the mean and variance of the drift fractional Brownian motions observed at discrete time instants. Both the central limit theorem and the Berry-Ess′een bounds for these estimators are obtained by using the Stein’s method via Malliavin calculus.展开更多
In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain...In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain the consistency and the asymptotic distribution of the LSE based on the observation {Xs, s∈[0,t]} as t tends to infinity.展开更多
A two-dimensional (2D) stochastic incompressible non-Newtonian fluid driven by the genuine cylindrical fractional Brownian motion (FBM) is studied with the Hurst parameter ∈ (1/4,1/2) under the Dirichlet bounda...A two-dimensional (2D) stochastic incompressible non-Newtonian fluid driven by the genuine cylindrical fractional Brownian motion (FBM) is studied with the Hurst parameter ∈ (1/4,1/2) under the Dirichlet boundary condition. The existence and regularity of the stochastic convolution corresponding to the stochastic non-Newtonian fluids are obtained by the estimate on the and the identity of the infinite double series spectrum of the spatial differential operator in the analytic number theory. The existence of the mild solution and the random attractor of a random dynamical system are then obtained for the stochastic non-Newtonian systems with ∈ (1/2,1) without any additional restriction on the parameter H.展开更多
Some It formulas with respect to mixed Fractional Brownian motion and Brownian motion were given in this paper.These extended the It formula for the fractional Wick It Skorohod integral with respect to Fractiona...Some It formulas with respect to mixed Fractional Brownian motion and Brownian motion were given in this paper.These extended the It formula for the fractional Wick It Skorohod integral with respect to Fractional Brownian motion,meanwhile extended the It formula for It Skorohod integral with respect to Brownian motion.Taylor's formula is applied to prove our conclusion in this article.展开更多
Let {X(t), t greater than or equal to 0} be a fractional Brownian motion of order 2 alpha with 0 < alpha < 1,beta > 0 be a real number, alpha(T) be a function of T and 0 < alpha(T), [GRAPHICS] (log T/alpha...Let {X(t), t greater than or equal to 0} be a fractional Brownian motion of order 2 alpha with 0 < alpha < 1,beta > 0 be a real number, alpha(T) be a function of T and 0 < alpha(T), [GRAPHICS] (log T/alpha(T))/log T = r, (0 less than or equal to r less than or equal to infinity). In this paper, we proved that [GRAPHICS] where c(1), c(2) are two positive constants depending only on alpha,beta.展开更多
In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to ...In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to reflect the relationship between H and the fractional power α.Sufficient conditions are established by using stochastic analysis theory and operator theory.An example is provided to illustrate the effectiveness of the proposed result.展开更多
Define the incremental fractional Brownian field ZH(τ, s) = BH(s+τ) -BH(s),where BH(s) is a standard fractional Brownian motion with Hurst parameter H ∈ (0, 1). Inthis paper, we first derive an exact asy...Define the incremental fractional Brownian field ZH(τ, s) = BH(s+τ) -BH(s),where BH(s) is a standard fractional Brownian motion with Hurst parameter H ∈ (0, 1). Inthis paper, we first derive an exact asymptotic of distribution of the maximum MH(Tu) =supτ∈[0,1],s∈[0,xτu] ZH(τ, s), which holds uniformly for x ∈ [A, B] with A, B two positive con-stants. We apply the findings to analyse the tail asymptotic and limit theorem of MH (τ) witha random index τ. In the end, we also prove an almost sure limit theorem for the maximum M1/2(τ) with non-random index T.展开更多
Let B={B^H(t)}t≥0 be a d-dimensional fractional Brownian motion with Hurst parameter H∈(0,1).Consider the functionals of k independent d-dimensional fractional Brownian motions 1/√n∫0^ent1⋯∫0^entk f(B^H,1(s1)+⋯+B...Let B={B^H(t)}t≥0 be a d-dimensional fractional Brownian motion with Hurst parameter H∈(0,1).Consider the functionals of k independent d-dimensional fractional Brownian motions 1/√n∫0^ent1⋯∫0^entk f(B^H,1(s1)+⋯+B^H,k(sk))ds1⋯dsk,where the Hurst index H=k/d.Using the method of moments,we prove the limit law and extending a result by Xu\cite{xu}of the case k=1.It can also be regarded as a fractional generalization of Biane\cite{biane}in the case of Brownian motion.展开更多
In this paper,sufficient conditions are formulated for controllability of fractional order stochastic differential inclusions with fractional Brownian motion(f Bm) via fixed point theorems,namely the Bohnenblust-Karli...In this paper,sufficient conditions are formulated for controllability of fractional order stochastic differential inclusions with fractional Brownian motion(f Bm) via fixed point theorems,namely the Bohnenblust-Karlin fixed point theorem for the convex case and the Covitz-Nadler fixed point theorem for the nonconvex case.The controllability Grammian matrix is defined by using Mittag-Leffler matrix function.Finally,a numerical example is presented to illustrate the efficiency of the obtained theoretical results.展开更多
The local existence and uniqueness of the solutions to backward stochastic differential equations(BSDEs, in short) driven by both fractional Brownian motions with Hurst parameter H ∈ (1/2, 1) and the underlying s...The local existence and uniqueness of the solutions to backward stochastic differential equations(BSDEs, in short) driven by both fractional Brownian motions with Hurst parameter H ∈ (1/2, 1) and the underlying standard Brownian motions are studied. The generalization of the It6 formula involving the fractional and standard Brownian motions is provided. By theory of Malliavin calculus and contraction mapping principle, the local existence and uniqueness of the solutions to BSDEs driven by both fractional Brownian motions and the underlying standard Brownian motions are obtained.展开更多
A limit theorem which can simplify slow–fast dynamical systems driven by fractional Brownian motion with the Hurst parameter H inside the(1/2, 1) interval has been proved. The slow variables of the original system ...A limit theorem which can simplify slow–fast dynamical systems driven by fractional Brownian motion with the Hurst parameter H inside the(1/2, 1) interval has been proved. The slow variables of the original system can be approximated by the solution of the simplified equations in the sense of mean square. An example is presented to illustrate the applications of the limit theorem.展开更多
This paper is concerned with the stochastically stability for the m-dimensional linear stochastic differential equations with respect to fractional Brownian motion (FBM) with Hurst parameter H ∈ (1/2, 1). On the ...This paper is concerned with the stochastically stability for the m-dimensional linear stochastic differential equations with respect to fractional Brownian motion (FBM) with Hurst parameter H ∈ (1/2, 1). On the basis of the pioneering work of Duncan and Hu, a Ito's formula is given. An improved derivative operator to Lyapunov functions is constructed, and the sufficient conditions for the stochastically stability of linear stochastic differential equations driven by FBM are established. These extend the stochastic Lyapunov stability theories.展开更多
In this paper,the pricing formulae of the geometric average Asian call option with the fixed and floating strike price under the fractional Brownian motion(FBM)are given out by the method of partial differential equat...In this paper,the pricing formulae of the geometric average Asian call option with the fixed and floating strike price under the fractional Brownian motion(FBM)are given out by the method of partial differential equation(PDE).The call-put parity for the geometric average Asian options is given.The results are generalization of option pricing under standard Brownian motion.展开更多
In this paper,we prove approximations of multifractional Brownian motions with moving-average representations and of those with harmonizable representations in the space of continuous functions on [0,1]. These approxi...In this paper,we prove approximations of multifractional Brownian motions with moving-average representations and of those with harmonizable representations in the space of continuous functions on [0,1]. These approximations are constructed by Poisson processes.展开更多
In this paper, the existence and smoothness of the collision local time are proved for two independent fractional Brownian motions, through L^2 convergence and Chaos expansion. Furthermore, the regularity of the colli...In this paper, the existence and smoothness of the collision local time are proved for two independent fractional Brownian motions, through L^2 convergence and Chaos expansion. Furthermore, the regularity of the collision local time process is studied.展开更多
The backward stochastic differential equations driven by both standard and fractional Brownian motions (or, in short, SFBSDE) axe studied. A Wick-It6 stochastic integral for a fractional Brownian motion is adopted. ...The backward stochastic differential equations driven by both standard and fractional Brownian motions (or, in short, SFBSDE) axe studied. A Wick-It6 stochastic integral for a fractional Brownian motion is adopted. The fractional It6 formula for the standard and fractional Brownian motions is provided. Introducing the concept of the quasi-conditional expectation, we study some its properties. Using the quasi-conditional expectation, we also discuss the existence and uniqueness of solutions to general SFBSDEs, where a fixed point principle is employed. Moreover, solutions to linear SFBSDEs are investigated. Finally, an explicit solution to a class of linear SFBSDEs is found.展开更多
In the paper, Harnack inequality and derivative formula are established for stochastic differential equation driven by fractional Brownian motion with Hurst parameter H < 1/2. As applications, strong Feller propert...In the paper, Harnack inequality and derivative formula are established for stochastic differential equation driven by fractional Brownian motion with Hurst parameter H < 1/2. As applications, strong Feller property, log-Harnack inequality and entropy-cost inequality are given.展开更多
基金Supported by the National Natural Science Foundation of China(12101004)the Natural Science Research Project of Anhui Educational Committee(2023AH030021)the Research Startup Foundation for Introducing Talent of Anhui Polytechnic University(2020YQQ064)。
文摘The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of convergence,and the asymptotic normality of the kernel-type estimator are discussed.Besides,we prove that the rate of convergence of the kernel-type estimator depends on the smoothness of the trend of the nonperturbed system.
基金The research of L.Yan was partially supported bythe National Natural Science Foundation of China (11971101)The research of Z.Chen was supported by National Natural Science Foundation of China (11971432)+3 种基金the Natural Science Foundation of Zhejiang Province (LY21G010003)supported by the Collaborative Innovation Center of Statistical Data Engineering Technology & Applicationthe Characteristic & Preponderant Discipline of Key Construction Universities in Zhejiang Province (Zhejiang Gongshang University-Statistics)the First Class Discipline of Zhejiang-A (Zhejiang Gongshang University-Statistics)。
文摘In this paper, by constructing a coupling equation, we establish the Harnack type inequalities for stochastic differential equations driven by fractional Brownian motion with Markovian switching. The Hurst parameter H is supposed to be in(1/2, 1). As a direct application, the strong Feller property is presented.
文摘Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the class of polar functions are studied. Our theorem 1 improves the previous results of Graversen and Legall. Theorem2 solves a problem of Legall (1987) on Brownian motion.
基金supported by the National Science Foundations (DMS0504783 DMS0604207)National Science Fund for Distinguished Young Scholars of China (70825005)
文摘This paper deals with the problems of consistency and strong consistency of the maximum likelihood estimators of the mean and variance of the drift fractional Brownian motions observed at discrete time instants. Both the central limit theorem and the Berry-Ess′een bounds for these estimators are obtained by using the Stein’s method via Malliavin calculus.
基金supported by the National Natural Science Foundation of China(11271020)the Distinguished Young Scholars Foundation of Anhui Province(1608085J06)supported by the National Natural Science Foundation of China(11171062)
文摘In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain the consistency and the asymptotic distribution of the LSE based on the observation {Xs, s∈[0,t]} as t tends to infinity.
基金supported by the National Natural Science Foundation of China (No.10971225)the Natural Science Foundation of Hunan Province (No.11JJ3004)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China(No.2009-1001)
文摘A two-dimensional (2D) stochastic incompressible non-Newtonian fluid driven by the genuine cylindrical fractional Brownian motion (FBM) is studied with the Hurst parameter ∈ (1/4,1/2) under the Dirichlet boundary condition. The existence and regularity of the stochastic convolution corresponding to the stochastic non-Newtonian fluids are obtained by the estimate on the and the identity of the infinite double series spectrum of the spatial differential operator in the analytic number theory. The existence of the mild solution and the random attractor of a random dynamical system are then obtained for the stochastic non-Newtonian systems with ∈ (1/2,1) without any additional restriction on the parameter H.
基金Natural Science Foundation of Shanghai,China(No.07ZR14002)National Natural Science Foundation of China(No.60974030)
文摘Some It formulas with respect to mixed Fractional Brownian motion and Brownian motion were given in this paper.These extended the It formula for the fractional Wick It Skorohod integral with respect to Fractional Brownian motion,meanwhile extended the It formula for It Skorohod integral with respect to Brownian motion.Taylor's formula is applied to prove our conclusion in this article.
文摘Let {X(t), t greater than or equal to 0} be a fractional Brownian motion of order 2 alpha with 0 < alpha < 1,beta > 0 be a real number, alpha(T) be a function of T and 0 < alpha(T), [GRAPHICS] (log T/alpha(T))/log T = r, (0 less than or equal to r less than or equal to infinity). In this paper, we proved that [GRAPHICS] where c(1), c(2) are two positive constants depending only on alpha,beta.
基金supported by NSFC(11271020,11401010)Natural Science Foundation of Anhui Province(1308085QA14)+1 种基金supported by NSFC(11571071)Innovation Program of Shanghai Municipal Education Commission(12ZZ063)
文摘In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to reflect the relationship between H and the fractional power α.Sufficient conditions are established by using stochastic analysis theory and operator theory.An example is provided to illustrate the effectiveness of the proposed result.
基金supported by National Science Foundation of China(11501250)Natural Science Foundation of Zhejiang Province of China(LQ14A010012,LY15A010019)+2 种基金Postdoctoral Research Program of Zhejiang ProvinceNatural Science Foundation of Jiangsu Higher Education Institution of China(14KJB110023)Research Foundation of SUST
文摘Define the incremental fractional Brownian field ZH(τ, s) = BH(s+τ) -BH(s),where BH(s) is a standard fractional Brownian motion with Hurst parameter H ∈ (0, 1). Inthis paper, we first derive an exact asymptotic of distribution of the maximum MH(Tu) =supτ∈[0,1],s∈[0,xτu] ZH(τ, s), which holds uniformly for x ∈ [A, B] with A, B two positive con-stants. We apply the findings to analyse the tail asymptotic and limit theorem of MH (τ) witha random index τ. In the end, we also prove an almost sure limit theorem for the maximum M1/2(τ) with non-random index T.
基金Q.Yu is partially supported by ECNU Academic Innovation Promotion Program for Excellent Doctoral Students(YBNLTS2019-010)the Scientific Research Innovation Program for Doctoral Students in Faculty of Economics and Management(2018FEM-BCKYB014).
文摘Let B={B^H(t)}t≥0 be a d-dimensional fractional Brownian motion with Hurst parameter H∈(0,1).Consider the functionals of k independent d-dimensional fractional Brownian motions 1/√n∫0^ent1⋯∫0^entk f(B^H,1(s1)+⋯+B^H,k(sk))ds1⋯dsk,where the Hurst index H=k/d.Using the method of moments,we prove the limit law and extending a result by Xu\cite{xu}of the case k=1.It can also be regarded as a fractional generalization of Biane\cite{biane}in the case of Brownian motion.
基金supported by Council of Scientific and Industrial Research,Extramural Research Division,Pusa,New Delhi,India(25/(0217)/13/EMR-Ⅱ)
文摘In this paper,sufficient conditions are formulated for controllability of fractional order stochastic differential inclusions with fractional Brownian motion(f Bm) via fixed point theorems,namely the Bohnenblust-Karlin fixed point theorem for the convex case and the Covitz-Nadler fixed point theorem for the nonconvex case.The controllability Grammian matrix is defined by using Mittag-Leffler matrix function.Finally,a numerical example is presented to illustrate the efficiency of the obtained theoretical results.
基金supported by NSFC grant(11371169)China Automobile Industry Innovation and Development Joint Fund(U1564213)
文摘The local existence and uniqueness of the solutions to backward stochastic differential equations(BSDEs, in short) driven by both fractional Brownian motions with Hurst parameter H ∈ (1/2, 1) and the underlying standard Brownian motions are studied. The generalization of the It6 formula involving the fractional and standard Brownian motions is provided. By theory of Malliavin calculus and contraction mapping principle, the local existence and uniqueness of the solutions to BSDEs driven by both fractional Brownian motions and the underlying standard Brownian motions are obtained.
基金supported by the National Nature Science Foundation of China (11372247 and 11102157)Program for NCET, the Shaanxi Project for Young New Star in Science and TechnologyNPU Foundation for Fundamental Research and SRF for ROCS, SEM
文摘A limit theorem which can simplify slow–fast dynamical systems driven by fractional Brownian motion with the Hurst parameter H inside the(1/2, 1) interval has been proved. The slow variables of the original system can be approximated by the solution of the simplified equations in the sense of mean square. An example is presented to illustrate the applications of the limit theorem.
基金Natural Science Foundation of Shanghai,China(No.07ZR14002)
文摘This paper is concerned with the stochastically stability for the m-dimensional linear stochastic differential equations with respect to fractional Brownian motion (FBM) with Hurst parameter H ∈ (1/2, 1). On the basis of the pioneering work of Duncan and Hu, a Ito's formula is given. An improved derivative operator to Lyapunov functions is constructed, and the sufficient conditions for the stochastically stability of linear stochastic differential equations driven by FBM are established. These extend the stochastic Lyapunov stability theories.
基金Shanghai Leading Academic Discipline Project,China(No.S30405)Special Funds for Major Specialties of Shanghai Education Committee,China
文摘In this paper,the pricing formulae of the geometric average Asian call option with the fixed and floating strike price under the fractional Brownian motion(FBM)are given out by the method of partial differential equation(PDE).The call-put parity for the geometric average Asian options is given.The results are generalization of option pricing under standard Brownian motion.
基金supported by National Natural Science Foundation of China (Grant No. 10901054)
文摘In this paper,we prove approximations of multifractional Brownian motions with moving-average representations and of those with harmonizable representations in the space of continuous functions on [0,1]. These approximations are constructed by Poisson processes.
基金the National Natural Science Foundation of China(No. 10471003).
文摘In this paper, the existence and smoothness of the collision local time are proved for two independent fractional Brownian motions, through L^2 convergence and Chaos expansion. Furthermore, the regularity of the collision local time process is studied.
基金Supported by National Basic Research Program of China (973 Program, No. 2007CB814901)National Natural Science Foundation of China (No. 71171003)+1 种基金Anhui Natural Science Foundation (No. 090416225)Anhui Natural Science Foundation of Universities (No. KJ2010A037)
文摘The backward stochastic differential equations driven by both standard and fractional Brownian motions (or, in short, SFBSDE) axe studied. A Wick-It6 stochastic integral for a fractional Brownian motion is adopted. The fractional It6 formula for the standard and fractional Brownian motions is provided. Introducing the concept of the quasi-conditional expectation, we study some its properties. Using the quasi-conditional expectation, we also discuss the existence and uniqueness of solutions to general SFBSDEs, where a fixed point principle is employed. Moreover, solutions to linear SFBSDEs are investigated. Finally, an explicit solution to a class of linear SFBSDEs is found.
基金supported by National Natural Science Foundation of China(Grant Nos.11131003 and 10901003)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20100003110005)+2 种基金the Laboratory of Mathematical and Complex Systemsthe Fundamental Research Funds for the Central UniversitiesKey Project of Chinese Ministry of Education(Grant No.211077)
文摘In the paper, Harnack inequality and derivative formula are established for stochastic differential equation driven by fractional Brownian motion with Hurst parameter H < 1/2. As applications, strong Feller property, log-Harnack inequality and entropy-cost inequality are given.