The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced.The flow near a wall suddenly set in mo- tion is studied for a non-Newtonian viscoelastic fluid with the frac...The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced.The flow near a wall suddenly set in mo- tion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell model.Exact solutions of velocity and stress are obtained by using the discrete in- verse Laplace transform of the sequential fractional derivatives.It is found that the effect of the fractional orders in the constitutive relationship on the flow field is signif- icant.The results show that for small times there are appreciable viscoelastic effects on the shear stress at the plate,for large times the viscoelastic effects become weak.展开更多
The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases ...The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases are solved and the exact solutions are obtained by using the Weber transform and the Laplace transform for fractional calculus.展开更多
Strain-rate frequency superposition(SRFS) is often employed to probe the low-frequency behavior of soft solids under oscillatory shear in anticipated linear response. However, physical interpretation of an apparently ...Strain-rate frequency superposition(SRFS) is often employed to probe the low-frequency behavior of soft solids under oscillatory shear in anticipated linear response. However, physical interpretation of an apparently well-overlapped master curve generated by SRFS has to combine with nonlinear analysis techniques such as Fourier transform rheology and stress decomposition method. The benefit of SRFS is discarded when some inconsistencies of the shifted master curves with the canonical linear response are observed. In this work, instead of evaluating the SRFS in full master curves, two criteria were proposed to decompose the original SRFS data and to delete the bad experimental data. Application to Carabopol suspensions indicates that good master curves could be constructed based upon the modified data and the high-frequency deviations often observed in original SRFS master curves are eliminated. The modified SRFS data also enable a better quantitative description and the evaluation of the apparent structural relaxation time by the two-mode fractional Maxwell model.展开更多
基金The project supported by the National Natural Science Foundation of China (10002003)Foundation for University Key Teacher by the Ministry of EducationResearch Fund for the Doctoral Program of Higher Education
文摘The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced.The flow near a wall suddenly set in mo- tion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell model.Exact solutions of velocity and stress are obtained by using the discrete in- verse Laplace transform of the sequential fractional derivatives.It is found that the effect of the fractional orders in the constitutive relationship on the flow field is signif- icant.The results show that for small times there are appreciable viscoelastic effects on the shear stress at the plate,for large times the viscoelastic effects become weak.
基金The project supported by the National Natural Science Foundation of China (10272067, 10426024)the Doctoral Program Foundation of the Education Ministry of China (20030422046)the Natural Science Foundation of Shandong University at Weihai.
文摘The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases are solved and the exact solutions are obtained by using the Weber transform and the Laplace transform for fractional calculus.
基金Project(11372263)supported by the National Natural Science Foundation of China
文摘Strain-rate frequency superposition(SRFS) is often employed to probe the low-frequency behavior of soft solids under oscillatory shear in anticipated linear response. However, physical interpretation of an apparently well-overlapped master curve generated by SRFS has to combine with nonlinear analysis techniques such as Fourier transform rheology and stress decomposition method. The benefit of SRFS is discarded when some inconsistencies of the shifted master curves with the canonical linear response are observed. In this work, instead of evaluating the SRFS in full master curves, two criteria were proposed to decompose the original SRFS data and to delete the bad experimental data. Application to Carabopol suspensions indicates that good master curves could be constructed based upon the modified data and the high-frequency deviations often observed in original SRFS master curves are eliminated. The modified SRFS data also enable a better quantitative description and the evaluation of the apparent structural relaxation time by the two-mode fractional Maxwell model.