期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
A Collocation Technique via Pell-Lucas Polynomials to Solve Fractional Differential EquationModel for HIV/AIDS with Treatment Compartment
1
作者 Gamze Yıldırım Suayip Yüzbası 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期281-310,共30页
In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatmen... In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct. 展开更多
关键词 Collocation method fractional differential equations HIV/AIDS epidemic model Pell-Lucas polynomials
下载PDF
Pseudo S-Asymptotically(ω,c)-Periodic Solutions to Fractional Differential Equations of Sobolev Type
2
作者 MAO Hang-ning CHANG Yong-kui 《Chinese Quarterly Journal of Mathematics》 2024年第3期295-306,共12页
In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotical... In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotically(ω,c)-periodic solutions for a semilinear fractional differential equations of Sobolev type.We finally present a simple example. 展开更多
关键词 Pseudo S-asymptotically(ω c)-periodic functions Evolution equations Sobolev type fractional differential equations Existence and uniqueness
下载PDF
Multiple Solutions for a Class of Singular Boundary Value Problems of Hadamard Fractional Differential Systems with p-Laplacian Operator
3
作者 Chen Wang Yansheng Liu 《Journal of Applied Mathematics and Physics》 2024年第9期3114-3134,共21页
This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the ... This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results. 展开更多
关键词 Multiple Solutions Fixed Point Index Theory Nonlinear fractional Differential Systems Hadamard fractional Derivative
下载PDF
Legendre-Weighted Residual Methods for System of Fractional Order Differential Equations
4
作者 Umme Ruman Md. Shafiqul Islam 《Journal of Applied Mathematics and Physics》 2024年第9期3163-3184,共22页
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ... The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations. 展开更多
关键词 fractional Differential Equations System of fractional Order BVPs Weighted Residual Methods Modified Legendre Polynomials
下载PDF
On Nonlinear Conformable Fractional Order Dynamical System via Differential Transform Method 被引量:1
5
作者 Kamal Shah Thabet Abdeljawad +1 位作者 Fahd Jarad Qasem Al-Mdallal 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1457-1472,共16页
This article studies a nonlinear fractional order Lotka-Volterra prey-predator type dynamical system.For the proposed study,we consider the model under the conformable fractional order derivative(CFOD).We investigate ... This article studies a nonlinear fractional order Lotka-Volterra prey-predator type dynamical system.For the proposed study,we consider the model under the conformable fractional order derivative(CFOD).We investigate the mentioned dynamical system for the existence and uniqueness of at least one solution.Indeed,Schauder and Banach fixed point theorems are utilized to prove our claim.Further,an algorithm for the approximate analytical solution to the proposed problem has been established.In this regard,the conformable fractional differential transform(CFDT)technique is used to compute the required results in the form of a series.Using Matlab-16,we simulate the series solution to illustrate our results graphically.Finally,a comparison of our solution to that obtained for the Caputo fractional order derivative via the perturbation method is given. 展开更多
关键词 Prey predator model existence results conformable fractional differential transform
下载PDF
On the partial stability of nonlinear impulsive Caputo fractional systems
6
作者 Boulbaba Ghanmi Saifeddine Ghnimi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2023年第2期166-179,共14页
In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptot... In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptotic uniform stability and Mittag Leffler stability.The approach presented is based on the specially introduced piecewise continuous Lyapunov functions.Furthermore,some numerical examples are given to show the effectiveness of our obtained theoretical results. 展开更多
关键词 impulsive fractional differential equations Mittag-Leffler function partial stability Caputo derivative
下载PDF
On Time Fractional Partial Differential Equations and Their Solution by Certain Formable Transform Decomposition Method
7
作者 Rania Saadeh Ahmad Qazza +1 位作者 Aliaa Burqan Shrideh Al-Omari 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3121-3139,共19页
This paper aims to investigate a new efficient method for solving time fractional partial differential equations.In this orientation,a reliable formable transform decomposition method has been designed and developed,w... This paper aims to investigate a new efficient method for solving time fractional partial differential equations.In this orientation,a reliable formable transform decomposition method has been designed and developed,which is a novel combination of the formable integral transform and the decomposition method.Basically,certain accurate solutions for time-fractional partial differential equations have been presented.Themethod under concern demandsmore simple calculations and fewer efforts compared to the existingmethods.Besides,the posed formable transformdecompositionmethod has been utilized to yield a series solution for given fractional partial differential equations.Moreover,several interesting formulas relevant to the formable integral transform are applied to fractional operators which are performed as an excellent application to the existing theory.Furthermore,the formable transform decomposition method has been employed for finding a series solution to a time-fractional Klein-Gordon equation.Over and above,some numerical simulations are also provided to ensure reliability and accuracy of the new approach. 展开更多
关键词 Caputo derivative fractional differential equations formable transform time-fractional klein-gordon equation decomposition method
下载PDF
Solving Fractional Differential Equations via Fixed Points of Chatterjea Maps
8
作者 Nawab Hussain Saud M.Alsulami Hind Alamri 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2617-2648,共32页
In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich a... In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich and Chatterjea nonexpansive mappings in a Banach space using the Krasnoselskii-Ishikawa iteration method associated withSλand consider some applications of our results to prove the existence of solutions for nonlinear integral and nonlinear fractional differential equations.We also establish certain interesting examples to illustrate the usability of our results. 展开更多
关键词 Common fixed points Reich and Chatterjea mappings Krasnoselskii-Ishikawa iteration complete metric space Banach space integral equation nonlinear fractional differential equation
下载PDF
Equation governing the probability density evolution of multi-dimensional linear fractional differential systems subject to Gaussian white noise
9
作者 Yi Luo Meng-Ze Lyu +1 位作者 Jian-Bing Chen Pol D.Spanos 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第3期199-208,共10页
Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian ... Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian property.The recently developed globally-evolving-based generalized density evolution equation(GE-GDEE),which is a unified partial differential equation(PDE)governing the transient probability density function(PDF)of a generic path-continuous process,including non-Markovian ones,provides a feasible tool to solve this problem.In the paper,the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established.In particular,it is proved that in the GE-GDEE corresponding to the state-quantities of interest,the intrinsic drift coefficient is a time-varying linear function,and can be analytically determined.In this sense,an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original highdimensional linear fractional differential system can be constructed such that their transient PDFs are identical.Specifically,for a multi-dimensional linear fractional differential system,if only one or two quantities are of interest,GE-GDEE is only in one or two dimensions,and the surrogate system would be a one-or two-dimensional linear integer-order system.Several examples are studied to assess the merit of the proposed method.Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems,the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian,and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems. 展开更多
关键词 Globally-evolving-based generalized density evolution equation(GE-GDEE) Linear fractional differential system Non-Markovian system Analytical intrinsic drift coefficient Dimension reduction
下载PDF
On Fractional Differential Inclusion for an EpidemicModel via L-Fuzzy Fixed Point Results
10
作者 Maha Noorwali Mohammed Shehu Shagari 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1937-1956,共20页
The real world is filled with uncertainty,vagueness,and imprecision.The concepts we meet in everyday life are vague rather than precise.In real-world situations,if a model requires that conclusions drawn from it have ... The real world is filled with uncertainty,vagueness,and imprecision.The concepts we meet in everyday life are vague rather than precise.In real-world situations,if a model requires that conclusions drawn from it have some bearings on reality,then two major problems immediately arise,viz.real situations are not usually crisp and deterministic;complete descriptions of real systems often require more comprehensive data than human beings could recognize simultaneously,process and understand.Conventional mathematical tools which require all inferences to be exact,are not always efficient to handle imprecisions in a wide variety of practical situations.Following the latter development,a lot of attention has been paid to examining novel L-fuzzy analogues of conventional functional equations and their various applications.In this paper,new coincidence point results for single-valued mappings and an L-fuzzy set-valued map in metric spaces are proposed.Regarding novelty and generality,the obtained invariant point notions are compared with some well-known related concepts via non-trivial examples.It is observed that our principal results subsume and refine some important ones in the corresponding domains.As an application,one of our results is utilized to discussmore general existence conditions for realizing the solutions of a non-integer order inclusion model for COVID-19. 展开更多
关键词 Hausdorff metric L-fuzzy set L-fuzzy set-valued map Caputo fractional differential inclusion COVID-19
下载PDF
Image Enhancement Using Adaptive Fractional Order Filter
11
作者 Ayesha Heena Nagashettappa Biradar +3 位作者 Najmuddin M.Maroof Surbhi Bhatia Arwa Mashat Shakila Basheer 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1409-1422,共14页
Image enhancement is an important preprocessing task as the contrast is low in most of the medical images,Therefore,enhancement becomes the mandatory process before actual image processing should start.This research a... Image enhancement is an important preprocessing task as the contrast is low in most of the medical images,Therefore,enhancement becomes the mandatory process before actual image processing should start.This research article proposes an enhancement of the model-based differential operator for the images in general and Echocardiographic images,the proposed operators are based on Grunwald-Letnikov(G-L),Riemann-Liouville(R-L)and Caputo(Li&Xie),which are the definitions of fractional order calculus.In this fractional-order,differentiation is well focused on the enhancement of echocardiographic images.This provoked for developing a non-linear filter mask for image enhancement.The designed filter is simple and effective in terms of improving the contrast of the input low contrast images and preserving the textural features,particularly in smooth areas.The novelty of the proposed method involves a procedure of partitioning the image into homogenous regions,details,and edges.Thereafter,a fractional differential mask is appropriately chosen adaptively for enhancing the partitioned pixels present in the image.It is also incorporated into the Hessian matrix with is a second-order derivative for every pixel and the parameters such as average gradient and entropy are used for qualitative analysis.The wide range of existing state-of-the-art techniques such as fixed order fractional differential filter for enhancement,histogram equalization,integer-order differential methods have been used.The proposed algorithm resulted in the enhancement of the input images with an increased value of average gradient as well as entropy in comparison to the previous methods.The values obtained are very close(almost equal to 99.9%)to the original values of the average gradient and entropy of the images.The results of the simulation validate the effectiveness of the proposed algorithm. 展开更多
关键词 Adaptive filter differential filter enhancement mask fractional differential mask fractional-order calculus hessian matrix
下载PDF
The Fractional Investigation of Fornberg-Whitham Equation Using an Efficient Technique
12
作者 Hassan Khan Poom Kumam +2 位作者 Asif Nawaz Qasim Khan Shahbaz Khan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期259-273,共15页
In the last few decades,it has become increasingly clear that fractional calculus always plays a very significant role in various branches of applied sciences.For this reason,fractional partial differential equations(... In the last few decades,it has become increasingly clear that fractional calculus always plays a very significant role in various branches of applied sciences.For this reason,fractional partial differential equations(FPDEs)are of more importance to model the different physical processes in nature more accurately.Therefore,the analytical or numerical solutions to these problems are taken into serious consideration and several techniques or algorithms have been developed for their solution.In the current work,the idea of fractional calculus has been used,and fractional FornbergWhithamequation(FFWE)is represented in its fractional view analysis.Awell-knownmethod which is residual power series method(RPSM),is then implemented to solve FFWE.TheRPSMresults are discussed through graphs and tables which conform to the higher accuracy of the proposed technique.The solutions at different fractional orders are obtained and shown to be convergent toward an integer-order solution.Because the RPSM procedure is simple and straightforward,it can be extended to solve other FPDEs and their systems. 展开更多
关键词 Caputo derivative fractional partial differential equations fornberg-whitham residual power series method
下载PDF
The Fractional Investigation of Some Nonlinear Partial Differential Equations by Using an Efficient Procedure
13
作者 Fairouz Tchier Hassan Khan +2 位作者 Shahbaz Khan Poom Kumam Ioannis Dassios 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2137-2153,共17页
The nonlinearity inmany problems occurs because of the complexity of the given physical phenomena.The present paper investigates the non-linear fractional partial differential equations’solutions using the Caputo ope... The nonlinearity inmany problems occurs because of the complexity of the given physical phenomena.The present paper investigates the non-linear fractional partial differential equations’solutions using the Caputo operator with Laplace residual power seriesmethod.It is found that the present technique has a direct and simple implementation to solve the targeted problems.The comparison of the obtained solutions has been done with actual solutions to the problems.The fractional-order solutions are presented and considered to be the focal point of this research article.The results of the proposed technique are highly accurate and provide useful information about the actual dynamics of each problem.Because of the simple implementation,the present technique can be extended to solve other important fractional order problems. 展开更多
关键词 fractional calculus laplace transform laplace residual power series method fractional partial differential equation power series fractional power series
下载PDF
Exact Solutions and Finite Time Stability of Linear Conformable Fractional Systems with Pure Delay
14
作者 Ahmed M.Elshenhab Xingtao Wang +1 位作者 Fatemah Mofarreh Omar Bazighifan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期927-940,共14页
We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their... We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results. 展开更多
关键词 Representation of solutions conformable fractional derivative conformable delayed matrix function conformable fractional delay differential equations finite time stability
下载PDF
Numerical Procedure for Fractional HBV Infection with Impact of Antibody Immune
15
作者 Sakda Noinang Zulqurnain Sabir +3 位作者 Muhammad Asif Zahoor Raja Soheil Salahshour Wajaree Weera Thongchai Botmart 《Computers, Materials & Continua》 SCIE EI 2023年第2期2575-2588,共14页
The current investigations are presented to solve the fractional order HBV differential infection system(FO-HBV-DIS)with the response of antibody immune using the optimization based stochastic schemes of the Levenberg... The current investigations are presented to solve the fractional order HBV differential infection system(FO-HBV-DIS)with the response of antibody immune using the optimization based stochastic schemes of the Levenberg-Marquardt backpropagation(LMB)neural networks(NNs),i.e.,LMBNNs.The FO-HBV-DIS with the response of antibody immune is categorized into five dynamics,healthy hepatocytes(H),capsids(D),infected hepatocytes(I),free virus(V)and antibodies(W).The investigations for three different FO variants have been tested numerically to solve the nonlinear FO-HBV-DIS.The data magnitudes are implemented 75%for training,10%for certification and 15%for testing to solve the FO-HBV-DIS with the response of antibody immune.The numerical observations are achieved using the stochastic LMBNNs procedures for soling the FO-HBV-DIS with the response of antibody immune and comparison of the results is presented through the database Adams-Bashforth-Moulton approach.To authenticate the validity,competence,consistency,capability and exactness of the LMBNNs,the numerical presentations using the mean square error(MSE),error histograms(EHs),state transitions(STs),correlation and regression are accomplished. 展开更多
关键词 fractional order HBV differential infection system artificial neural networks nonlinear Levenberg-Marquardt backpropagation Adams-Bashforth-Moulton
下载PDF
Existence Results for Systems of Nonlinear Caputo Fractional Differential Equations
16
作者 Faten Toumi 《Applied Mathematics》 2023年第3期182-195,共14页
We aim, in this work, to demonstrate the existence of minimal and maximal coupled quasi-solutions for nonlinear Caputo fractional differential systems with order q ∈ (1,2). Our approach is based on mixed monotone ite... We aim, in this work, to demonstrate the existence of minimal and maximal coupled quasi-solutions for nonlinear Caputo fractional differential systems with order q ∈ (1,2). Our approach is based on mixed monotone iterative techniques developed under the concept of lower and upper quasi-solutions. Our results extend those obtained for ordinary differential equations and fractional ones. 展开更多
关键词 Mixed Quasi-Monotone Property Coupled Lower and Upper Solutions Mon-otone Method Nonlinear fractional Differential System
下载PDF
Existence and Stability of Solutions for a Class of Fractional Impulsive Differential Equations with Atangana-Baleanu-Caputo Derivative
17
作者 Xuefan Lin Weimin Hu +1 位作者 Youhui Su Yongzhen Yun 《Journal of Applied Mathematics and Physics》 2023年第12期3914-3927,共14页
In this paper, we are concerned with the existence of solutions to a class of Atangana-Baleanu-Caputo impulsive fractional differential equation. The existence and uniqueness of the solution of the fractional differen... In this paper, we are concerned with the existence of solutions to a class of Atangana-Baleanu-Caputo impulsive fractional differential equation. The existence and uniqueness of the solution of the fractional differential equation are obtained by Banach and Krasnoselakii fixed point theorems, and sufficient conditions for the existence and uniqueness of the solution are also developed. In addition, the Hyers-Ulam stability of the solution is considered. At last, an example is given to illustrate the main results. 展开更多
关键词 fractional Differential Equation Fixed Point Theorem Existence of Solutions
下载PDF
Exact Traveling Wave Solutions of the Generalized Fractional Differential mBBM Equation
18
作者 Yuting Zhong Renzhi Lu Heng Su 《Advances in Pure Mathematics》 2023年第3期167-173,共7页
By using the fractional complex transform and the bifurcation theory to the generalized fractional differential mBBM equation, we first transform this fractional equation into a plane dynamic system, and then find its... By using the fractional complex transform and the bifurcation theory to the generalized fractional differential mBBM equation, we first transform this fractional equation into a plane dynamic system, and then find its equilibrium points and first integral. Based on this, the phase portraits of the corresponding plane dynamic system are given. According to the phase diagram characteristics of the dynamic system, the periodic solution corresponds to the limit cycle or periodic closed orbit. Therefore, according to the phase portraits and the properties of elliptic functions, we obtain exact explicit parametric expressions of smooth periodic wave solutions. This method can also be applied to other fractional equations. 展开更多
关键词 A Generalized fractional Differential mBBM Equation Traveling Wave Solution Phase Portrait
下载PDF
Discussion on the Homology Theory of Lie Algebras
19
作者 Lilong Kang Yu Wang Caiyu Du 《Journal of Applied Mathematics and Physics》 2024年第7期2367-2376,共10页
Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent m... Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2). 展开更多
关键词 Lie Algebra Differential Sequence Differential fractional Algebra COHOMOLOGY
下载PDF
EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH NON-SEPARATED TYPE INTEGRAL BOUNDARY CONDITIONS 被引量:6
20
作者 Bashir Ahmad Juan J. Nieto Ahmed Alsaedi 《Acta Mathematica Scientia》 SCIE CSCD 2011年第6期2122-2130,共9页
In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results a... In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2. 展开更多
关键词 fractional differential equations non-separated integral boundary conditions contraction principle Krasnoselskii's fixed point theorem LeraySchauder degree
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部