This paper introduces a new four-dimensional (4D) hyperchaotic system, which has only two quadratic nonlinearity parameters but with a complex topological structure. Some complicated dynamical properties are then in...This paper introduces a new four-dimensional (4D) hyperchaotic system, which has only two quadratic nonlinearity parameters but with a complex topological structure. Some complicated dynamical properties are then investigated in detail by using bifurcations, Poincare mapping, LE spectra. Furthermore, a simple fourth-order electronic circuit is designed for hardware implementation of the 4D hyperchaotic attractors. In particular, a remarkable fractional-order circuit diagram is designed for physically verifying the hyperchaotic attractors existing not only in the integer-order system but also in the fractional-order system with an order as low as 3.6.展开更多
In order to better identify the parameters of the fractional-order system,a modified particle swarm optimization(MPSO)algorithm based on an improved Tent mapping is proposed.The MPSO algorithm is validated with eight ...In order to better identify the parameters of the fractional-order system,a modified particle swarm optimization(MPSO)algorithm based on an improved Tent mapping is proposed.The MPSO algorithm is validated with eight classical test functions,and compared with the POS algorithm with adaptive time varying accelerators(ACPSO),the genetic algorithm(GA),a d the improved PSO algorithm with passive congregation(IPSO).Based on the systems with known model structures a d unknown model structures,the proposed algorithm is adopted to identify two typical fractional-order models.The results of parameter identification show that the application of average value of position information is beneficial to making f 11 use of the information exchange among individuals and speeds up the global searching speed.By introducing the uniformity and ergodicity of Tent mapping,the MPSO avoids the extreme v^ue of position information,so as not to fall into the local optimal value.In brief the MPSOalgorithm is an effective a d useful method with a fast convergence rate and high accuracy.展开更多
A challenging topic in nonlinear dynamics concerns the study of fractional-order systems without equilibrium points.In particular, no paper has been published to date regarding the presence of hyperchaos in these syst...A challenging topic in nonlinear dynamics concerns the study of fractional-order systems without equilibrium points.In particular, no paper has been published to date regarding the presence of hyperchaos in these systems. This paper aims to bridge the gap by introducing a new example of fractional-order hyperchaotic system without equilibrium points. The conducted analysis shows that hyperchaos exists in the proposed system when its order is as low as 3.84. Moreover, an interesting application of hyperchaotic synchronization to the considered fractional-order system is provided.展开更多
In this paper, the fractional-order Genesio-Tesi system showing chaotic behaviours is introduced, and the corresponding one in an integer-order form is studied intensively. Based on the harmonic balance principle, whi...In this paper, the fractional-order Genesio-Tesi system showing chaotic behaviours is introduced, and the corresponding one in an integer-order form is studied intensively. Based on the harmonic balance principle, which is widely used in the frequency analysis of nonlinear control systems, a theoretical approach is used to investigate the conditions of system parameters under which this fractional-order system can give rise to a chaotic attractor. Finally, the numerical simulation is used to verify the validity of the theoretical results.展开更多
This paper addresses improvements in fractional order(FO)system performance.Although the classical proportional-integral-derivative(PID)-like fuzzy controller can provide adequate results for both transient and steady...This paper addresses improvements in fractional order(FO)system performance.Although the classical proportional-integral-derivative(PID)-like fuzzy controller can provide adequate results for both transient and steady-state responses in both linear and nonlinear systems,the FOPID fuzzy controller has been proven to provide better results.This high performance was obtained thanks to the combinative benefits of FO and fuzzy-logic techniques.This paper describes how the optimal gains and FO parameters of the FOPID controller were obtained by the use of a modern optimizer,social spider optimization,in order to improve the response of fractional dynamical systems.This group of systems had usually produced multimodal error surfaces/functions that occasionally had many variant local minima.The integral time of absolute error(ITAE)used in this study was the error function.The results showed that the strategy adopted produced superior performance regarding the lowest ITAE value.It reached a value of 88.22 while the best value obtained in previous work was 98.87.A further comparison between the current work and previous studies concerning transient-analysis factors of the model’s response showed that the strategy proposed was the only one that was able to produce fast rise time,low-percentage overshoot,and very small steady-state error.However,the other strategies were good for one factor,but not for the others.展开更多
In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient...In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities(LMIs) approach by using an indirect Lyapunov method. The proposed FOPI observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional(FOP) observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.展开更多
This study explores a stable model order reduction method for fractional-order systems. Using the unsymmetric Lanczos algorithm, the reduced order system with a certain number of matched moments is generated. To obtai...This study explores a stable model order reduction method for fractional-order systems. Using the unsymmetric Lanczos algorithm, the reduced order system with a certain number of matched moments is generated. To obtain a stable reduced order system, the stable model order reduction procedure is discussed. By the revised operation on the tridiagonal matrix produced by the unsymmetric Lanczos algorithm, we propose a reduced order modeling method for a fractional-order system to achieve a satisfactory fitting effect with the original system by the matched moments in the frequency domain. Besides, the bound function of the order reduction error is offered. Two numerical examples are presented to illustrate the effectiveness of the proposed method.展开更多
We present the generalized forms of Parrondo's paradox existing in fractional-order nonlinear systems. The gener- alization is implemented by applying a parameter switching (PS) algorithm to the corresponding initi...We present the generalized forms of Parrondo's paradox existing in fractional-order nonlinear systems. The gener- alization is implemented by applying a parameter switching (PS) algorithm to the corresponding initial value problems associated with the fractional-order nonlinear systems. The PS algorithm switches a system parameter within a specific set of N 〉 2 values when solving the system with some numerical integration method. It is proven that any attractor of the concerned system can be approximated numerically. By replacing the words "winning" and "loosing" in the classical Parrondo's paradox with "order" and "chaos", respectively, the PS algorithm leads to the generalized Parrondo's paradox: chaos1 + chaos2 +..- + chaosN = order and order1 + order2 +.-. + orderN = chaos. Finally, the concept is well demon- strated with the results based on the fractional-order Chen system.展开更多
An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe...An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.展开更多
Considering the multivariable and fractional-order characteristics of proton exchange membrane fuel cells(PEMFCs),a fractional-order subspace identification method(FOSIM)is proposed in this paper to establish a fracti...Considering the multivariable and fractional-order characteristics of proton exchange membrane fuel cells(PEMFCs),a fractional-order subspace identification method(FOSIM)is proposed in this paper to establish a fractionalorder state space(FOSS)model,which can be expressed as a multivariable configuration with two inputs,hydrogenflow rate and stack current,and two outputs,cell voltage and power.Based on this model,a novel constrained optimal control law named the Hildreth model predictive control(H-MPC)strategy is created,which employs a Hildreth quadratic programming algorithm to adjust the output power of fuel cells through adaptively regulating hydrogen flow and stack current.dSPACE semi-physical simulation results demonstrate that,compared with proportional-integral-derivative and quadratic programming MPC(QP-MPC),the proposed H-MPC exhibits better tracking ability and strong robustness against variations of PEMFC power.展开更多
Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order...Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order calculus has the inherent advantage of easily jumping out of local extreme values;here,it is introduced into the particle-swarm algorithm to invert the true temperature.An improved adaptive-adjustment mechanism is applied to automatically adjust the current velocity order of the particles and update their velocity and position values,increasing the accuracy of the true temperature values.The results of simulations using the proposed algorithm were compared with three algorithms using typical emissivity models:the internal penalty function algorithm,the optimization function(fmincon)algorithm,and the conventional particle-swarm optimization algorithm.The results show that the proposed algorithm has good accuracy for true-temperature inversion.Actual experimental results from a rocket-motor plume were used to demonstrate that the true-temperature inversion results of this algorithm are in good agreement with the theoretical true-temperature values.展开更多
The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties o...The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.展开更多
The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertaint...The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertainties are a type of parametric uncertainties that cannot be avoided when modeling real-world plants.Also,in the considered Smith predictor control structure it is supposed that the controller is a fractional-order proportional integral derivative(FOPID)controller.To the best of the authors'knowledge,no method has been developed until now to analyze the robust stability of a Smith predictor based fractional-order control system in the presence of the simultaneous uncertainties in gain,time-constants,and time delay.The three primary contributions of this study are as follows:ⅰ)a set of necessary and sufficient conditions is constructed using a graphical method to examine the robust stability of a Smith predictor-based fractionalorder control system—the proposed method explicitly determines whether or not the FOPID controller can robustly stabilize the Smith predictor-based fractional-order control system;ⅱ)an auxiliary function as a robust stability testing function is presented to reduce the computational complexity of the robust stability analysis;andⅲ)two auxiliary functions are proposed to achieve the control requirements on the disturbance rejection and the noise reduction.Finally,four numerical examples and an experimental verification are presented in this study to demonstrate the efficacy and significance of the suggested technique.展开更多
Considering the fact that memristors have the characteristics similar to biological synapses, a fractional-order multistable memristor is proposed in this paper. It is verified that the fractional-order memristor has ...Considering the fact that memristors have the characteristics similar to biological synapses, a fractional-order multistable memristor is proposed in this paper. It is verified that the fractional-order memristor has multiple local active regions and multiple stable hysteresis loops, and the influence of fractional-order on its nonvolatility is also revealed. Then by considering the fractional-order memristor as an autapse of Hindmarsh–Rose(HR) neuron model, a fractional-order memristive neuron model is developed. The effects of the initial value, external excitation current, coupling strength and fractional-order on the firing behavior are discussed by time series, phase diagram, Lyapunov exponent and inter spike interval(ISI) bifurcation diagram. Three coexisting firing patterns, including irregular asymptotically periodic(A-periodic)bursting, A-periodic bursting and chaotic bursting, dependent on the memristor initial values, are observed. It is also revealed that the fractional-order can not only induce the transition of firing patterns, but also change the firing frequency of the neuron. Finally, a neuron circuit with variable fractional-order is designed to verify the numerical simulations.展开更多
We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a n...We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained.Finally, we verify the accuracy of our results using two numerical simulation examples.展开更多
A fractional-order cumulative optimization GM(1,2)model based on grey theory is proposed to study the relationship between torpedo loading and working reliabilities.In this model,the average relative error function re...A fractional-order cumulative optimization GM(1,2)model based on grey theory is proposed to study the relationship between torpedo loading and working reliabilities.In this model,the average relative error function related to order and background value is established.Taking the average relative error function as the objective function,the optimal value of the two parameters is obtained through the optimization method,and the minimum value of the average relative error is determined.The calculation example shows that this method can greatly improve the accuracy of the model and more accurately reflect the relationship between torpedo loading and working reliabilities compared with the traditional GM(1,2)model.展开更多
A fractional-order thermo-elastic model taking into account the small-scale effects of the thermo-elastic coupled behavior is developed to study the free vibration of a higher-order shear microplate.The nonlocal strai...A fractional-order thermo-elastic model taking into account the small-scale effects of the thermo-elastic coupled behavior is developed to study the free vibration of a higher-order shear microplate.The nonlocal strain gradient theory is modified with the introduction of the fractional-order derivatives and the nonlocal characteristic length.The Fourier heat conduction is replaced by the non-Fourier heat conduction with the introduction of the fractional order and the memory characteristic time.Numerical calculations are performed to analyze the effects of the nonlocal strain gradient parameters,the spatiotemporal fractional order,the nonlocal characteristic length,and the memory characteristic time on the natural frequencies,the vibration attenuation,and the phase shift between the temperature field and the displacement field.The numerical results show that the new thermo-elastic model with the spatiotemporal fractional order can provide more exquisite descriptions of the thermo-elastic behavior at a small scale.展开更多
A fractional-order delayed SEIR rumor spreading model with a nonlinear incidence function is established in this paper,and a novel strategy to control the bifurcation of this model is proposed.First,Hopf bifurcation i...A fractional-order delayed SEIR rumor spreading model with a nonlinear incidence function is established in this paper,and a novel strategy to control the bifurcation of this model is proposed.First,Hopf bifurcation is investigated by considering time delay as bifurcation parameter for the system without a feedback controller.Then,a state feedback controller is designed to control the occurrence of bifurcation in advance or to delay it by changing the parameters of the controller.Finally,in order to verify the theoretical results,some numerical simulations are given.展开更多
Although some numerical methods of the fractional-order chaotic systems have been announced,high-precision numerical methods have always been the direction that researchers strive to pursue.Based on this problem,this ...Although some numerical methods of the fractional-order chaotic systems have been announced,high-precision numerical methods have always been the direction that researchers strive to pursue.Based on this problem,this paper introduces a high-precision numerical approach.Some complex dynamic behavior of fractional-order Lorenz chaotic systems are shown by using the present method.We observe some novel dynamic behavior in numerical experiments which are unlike any that have been previously discovered in numerical experiments or theoretical studies.We investigate the influence of α_(1),α_(2),α_(3) on the numerical solution of fractional-order Lorenz chaotic systems.The simulation results of integer order are in good agreement with those of othermethods.The simulation results of numerical experiments demonstrate the effectiveness of the present method.展开更多
Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block...Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block system,so as to improve the tracking efficiency and collision avoidance performance.Design/methodology/approach–The mathematical model of information interaction between trains is established based on algebraic graph theory,so that the train can obtain the state information of adjacent trains,and then realize the distributed cooperative control of each train.In the controller design,the sliding mode control and fractional calculus are combined to avoid the discontinuous switching phenomenon,so as to suppress the chattering of sliding mode control,and a parameter adaptive law is constructed to approximate the time-varying operating resistance coefficient.Findings–The simulation results show that compared with proportional integral derivative(PID)control and ordinary sliding mode control,the control accuracy of the proposed algorithm in terms of speed is,respectively,improved by 25%and 75%.The error frequency and fluctuation range of the proposed algorithm are reduced in the position error control,the error value tends to 0,and the operation trend tends to be consistent.Therefore,the control method can improve the control accuracy of the system and prove that it has strong immunity.Originality/value–The algorithm can reduce the influence of external interference in the actual operating environment,realize efficient and stable tracking of trains,and ensure the safety of train control.展开更多
文摘This paper introduces a new four-dimensional (4D) hyperchaotic system, which has only two quadratic nonlinearity parameters but with a complex topological structure. Some complicated dynamical properties are then investigated in detail by using bifurcations, Poincare mapping, LE spectra. Furthermore, a simple fourth-order electronic circuit is designed for hardware implementation of the 4D hyperchaotic attractors. In particular, a remarkable fractional-order circuit diagram is designed for physically verifying the hyperchaotic attractors existing not only in the integer-order system but also in the fractional-order system with an order as low as 3.6.
基金The National Natural Science Foundation of China(No.61374153,61473138,61374133)the Natural Science Foundation of Jiangsu Province(No.BK20151130)+1 种基金Six Talent Peaks Project in Jiangsu Province(No.2015-DZXX-011)China Scholarship Council Fund(No.201606845005)
文摘In order to better identify the parameters of the fractional-order system,a modified particle swarm optimization(MPSO)algorithm based on an improved Tent mapping is proposed.The MPSO algorithm is validated with eight classical test functions,and compared with the POS algorithm with adaptive time varying accelerators(ACPSO),the genetic algorithm(GA),a d the improved PSO algorithm with passive congregation(IPSO).Based on the systems with known model structures a d unknown model structures,the proposed algorithm is adopted to identify two typical fractional-order models.The results of parameter identification show that the application of average value of position information is beneficial to making f 11 use of the information exchange among individuals and speeds up the global searching speed.By introducing the uniformity and ergodicity of Tent mapping,the MPSO avoids the extreme v^ue of position information,so as not to fall into the local optimal value.In brief the MPSOalgorithm is an effective a d useful method with a fast convergence rate and high accuracy.
文摘A challenging topic in nonlinear dynamics concerns the study of fractional-order systems without equilibrium points.In particular, no paper has been published to date regarding the presence of hyperchaos in these systems. This paper aims to bridge the gap by introducing a new example of fractional-order hyperchaotic system without equilibrium points. The conducted analysis shows that hyperchaos exists in the proposed system when its order is as low as 3.84. Moreover, an interesting application of hyperchaotic synchronization to the considered fractional-order system is provided.
文摘In this paper, the fractional-order Genesio-Tesi system showing chaotic behaviours is introduced, and the corresponding one in an integer-order form is studied intensively. Based on the harmonic balance principle, which is widely used in the frequency analysis of nonlinear control systems, a theoretical approach is used to investigate the conditions of system parameters under which this fractional-order system can give rise to a chaotic attractor. Finally, the numerical simulation is used to verify the validity of the theoretical results.
文摘This paper addresses improvements in fractional order(FO)system performance.Although the classical proportional-integral-derivative(PID)-like fuzzy controller can provide adequate results for both transient and steady-state responses in both linear and nonlinear systems,the FOPID fuzzy controller has been proven to provide better results.This high performance was obtained thanks to the combinative benefits of FO and fuzzy-logic techniques.This paper describes how the optimal gains and FO parameters of the FOPID controller were obtained by the use of a modern optimizer,social spider optimization,in order to improve the response of fractional dynamical systems.This group of systems had usually produced multimodal error surfaces/functions that occasionally had many variant local minima.The integral time of absolute error(ITAE)used in this study was the error function.The results showed that the strategy adopted produced superior performance regarding the lowest ITAE value.It reached a value of 88.22 while the best value obtained in previous work was 98.87.A further comparison between the current work and previous studies concerning transient-analysis factors of the model’s response showed that the strategy proposed was the only one that was able to produce fast rise time,low-percentage overshoot,and very small steady-state error.However,the other strategies were good for one factor,but not for the others.
基金supported by King Abdullah University of Science and Technology (KAUST),KSA
文摘In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities(LMIs) approach by using an indirect Lyapunov method. The proposed FOPI observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional(FOP) observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.
基金supported by the National Natural Science Foundation of China(61304094,61673198,61773187)the Natural Science Foundation of Liaoning Province,China(20180520009)
文摘This study explores a stable model order reduction method for fractional-order systems. Using the unsymmetric Lanczos algorithm, the reduced order system with a certain number of matched moments is generated. To obtain a stable reduced order system, the stable model order reduction procedure is discussed. By the revised operation on the tridiagonal matrix produced by the unsymmetric Lanczos algorithm, we propose a reduced order modeling method for a fractional-order system to achieve a satisfactory fitting effect with the original system by the matched moments in the frequency domain. Besides, the bound function of the order reduction error is offered. Two numerical examples are presented to illustrate the effectiveness of the proposed method.
文摘We present the generalized forms of Parrondo's paradox existing in fractional-order nonlinear systems. The gener- alization is implemented by applying a parameter switching (PS) algorithm to the corresponding initial value problems associated with the fractional-order nonlinear systems. The PS algorithm switches a system parameter within a specific set of N 〉 2 values when solving the system with some numerical integration method. It is proven that any attractor of the concerned system can be approximated numerically. By replacing the words "winning" and "loosing" in the classical Parrondo's paradox with "order" and "chaos", respectively, the PS algorithm leads to the generalized Parrondo's paradox: chaos1 + chaos2 +..- + chaosN = order and order1 + order2 +.-. + orderN = chaos. Finally, the concept is well demon- strated with the results based on the fractional-order Chen system.
基金This research was funded by the Deputyship for Research and Innovation,Ministry of Education,Saudi Arabia,through the University of Tabuk,Grant Number S-1443-0123.
文摘An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.
基金This work was supported in part by National Natural Science Foundation of China grant No.61374153 and grant No.52377209in part by“Postgraduate Research&Practice Innovation Program of Jiangsu Province”(grant No.SJCX23_0132).
文摘Considering the multivariable and fractional-order characteristics of proton exchange membrane fuel cells(PEMFCs),a fractional-order subspace identification method(FOSIM)is proposed in this paper to establish a fractionalorder state space(FOSS)model,which can be expressed as a multivariable configuration with two inputs,hydrogenflow rate and stack current,and two outputs,cell voltage and power.Based on this model,a novel constrained optimal control law named the Hildreth model predictive control(H-MPC)strategy is created,which employs a Hildreth quadratic programming algorithm to adjust the output power of fuel cells through adaptively regulating hydrogen flow and stack current.dSPACE semi-physical simulation results demonstrate that,compared with proportional-integral-derivative and quadratic programming MPC(QP-MPC),the proposed H-MPC exhibits better tracking ability and strong robustness against variations of PEMFC power.
基金supported by the National Natural Science Foundation of China(Grant No.62205280)the Graduate Innovation Foundation of Yantai University(Grant No.GGIFYTU2348).
文摘Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order calculus has the inherent advantage of easily jumping out of local extreme values;here,it is introduced into the particle-swarm algorithm to invert the true temperature.An improved adaptive-adjustment mechanism is applied to automatically adjust the current velocity order of the particles and update their velocity and position values,increasing the accuracy of the true temperature values.The results of simulations using the proposed algorithm were compared with three algorithms using typical emissivity models:the internal penalty function algorithm,the optimization function(fmincon)algorithm,and the conventional particle-swarm optimization algorithm.The results show that the proposed algorithm has good accuracy for true-temperature inversion.Actual experimental results from a rocket-motor plume were used to demonstrate that the true-temperature inversion results of this algorithm are in good agreement with the theoretical true-temperature values.
文摘The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.
基金supported by the Estonian Research Council(PRG658)。
文摘The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertainties are a type of parametric uncertainties that cannot be avoided when modeling real-world plants.Also,in the considered Smith predictor control structure it is supposed that the controller is a fractional-order proportional integral derivative(FOPID)controller.To the best of the authors'knowledge,no method has been developed until now to analyze the robust stability of a Smith predictor based fractional-order control system in the presence of the simultaneous uncertainties in gain,time-constants,and time delay.The three primary contributions of this study are as follows:ⅰ)a set of necessary and sufficient conditions is constructed using a graphical method to examine the robust stability of a Smith predictor-based fractionalorder control system—the proposed method explicitly determines whether or not the FOPID controller can robustly stabilize the Smith predictor-based fractional-order control system;ⅱ)an auxiliary function as a robust stability testing function is presented to reduce the computational complexity of the robust stability analysis;andⅲ)two auxiliary functions are proposed to achieve the control requirements on the disturbance rejection and the noise reduction.Finally,four numerical examples and an experimental verification are presented in this study to demonstrate the efficacy and significance of the suggested technique.
基金Project supported by the National Key Research and Development Program of China (Grant No.2018AAA0103300)the National Natural Science Foundation of China (Grant Nos.62171401 and 62071411)。
文摘Considering the fact that memristors have the characteristics similar to biological synapses, a fractional-order multistable memristor is proposed in this paper. It is verified that the fractional-order memristor has multiple local active regions and multiple stable hysteresis loops, and the influence of fractional-order on its nonvolatility is also revealed. Then by considering the fractional-order memristor as an autapse of Hindmarsh–Rose(HR) neuron model, a fractional-order memristive neuron model is developed. The effects of the initial value, external excitation current, coupling strength and fractional-order on the firing behavior are discussed by time series, phase diagram, Lyapunov exponent and inter spike interval(ISI) bifurcation diagram. Three coexisting firing patterns, including irregular asymptotically periodic(A-periodic)bursting, A-periodic bursting and chaotic bursting, dependent on the memristor initial values, are observed. It is also revealed that the fractional-order can not only induce the transition of firing patterns, but also change the firing frequency of the neuron. Finally, a neuron circuit with variable fractional-order is designed to verify the numerical simulations.
基金supported by the Anhui Provincial Development and Reform Commission New Energy Vehicles and Intelligent Connected Automobile Industry Technology Innovation Project。
文摘We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained.Finally, we verify the accuracy of our results using two numerical simulation examples.
文摘A fractional-order cumulative optimization GM(1,2)model based on grey theory is proposed to study the relationship between torpedo loading and working reliabilities.In this model,the average relative error function related to order and background value is established.Taking the average relative error function as the objective function,the optimal value of the two parameters is obtained through the optimization method,and the minimum value of the average relative error is determined.The calculation example shows that this method can greatly improve the accuracy of the model and more accurately reflect the relationship between torpedo loading and working reliabilities compared with the traditional GM(1,2)model.
基金the National Natural Science Foundation of China(Nos.12072022 and 11872105)the Fundamental Research Funds for the Central Universities(Nos.FRF-TW-2018-005 and FRF-BR-18-008B)。
文摘A fractional-order thermo-elastic model taking into account the small-scale effects of the thermo-elastic coupled behavior is developed to study the free vibration of a higher-order shear microplate.The nonlocal strain gradient theory is modified with the introduction of the fractional-order derivatives and the nonlocal characteristic length.The Fourier heat conduction is replaced by the non-Fourier heat conduction with the introduction of the fractional order and the memory characteristic time.Numerical calculations are performed to analyze the effects of the nonlocal strain gradient parameters,the spatiotemporal fractional order,the nonlocal characteristic length,and the memory characteristic time on the natural frequencies,the vibration attenuation,and the phase shift between the temperature field and the displacement field.The numerical results show that the new thermo-elastic model with the spatiotemporal fractional order can provide more exquisite descriptions of the thermo-elastic behavior at a small scale.
基金supported by the National Natural Science Foundation of China (U1703262,62163035,61866036,62006196,61963033,62163035)the Tianshan Innovation Team Program (2020D14017)the Tianshan Xuesong Program (2018XS02).
文摘A fractional-order delayed SEIR rumor spreading model with a nonlinear incidence function is established in this paper,and a novel strategy to control the bifurcation of this model is proposed.First,Hopf bifurcation is investigated by considering time delay as bifurcation parameter for the system without a feedback controller.Then,a state feedback controller is designed to control the occurrence of bifurcation in advance or to delay it by changing the parameters of the controller.Finally,in order to verify the theoretical results,some numerical simulations are given.
基金supported by the Natural Science Foundation of Inner Mongolia[2021MS01009]Jining Normal University[JSJY2021040,Jsbsjj1704,jsky202145].
文摘Although some numerical methods of the fractional-order chaotic systems have been announced,high-precision numerical methods have always been the direction that researchers strive to pursue.Based on this problem,this paper introduces a high-precision numerical approach.Some complex dynamic behavior of fractional-order Lorenz chaotic systems are shown by using the present method.We observe some novel dynamic behavior in numerical experiments which are unlike any that have been previously discovered in numerical experiments or theoretical studies.We investigate the influence of α_(1),α_(2),α_(3) on the numerical solution of fractional-order Lorenz chaotic systems.The simulation results of integer order are in good agreement with those of othermethods.The simulation results of numerical experiments demonstrate the effectiveness of the present method.
基金supported by the Natural Science Foundation of China under Grant 52162050R&D plan project for science and technology of China Railway(No.N2021G045).
文摘Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block system,so as to improve the tracking efficiency and collision avoidance performance.Design/methodology/approach–The mathematical model of information interaction between trains is established based on algebraic graph theory,so that the train can obtain the state information of adjacent trains,and then realize the distributed cooperative control of each train.In the controller design,the sliding mode control and fractional calculus are combined to avoid the discontinuous switching phenomenon,so as to suppress the chattering of sliding mode control,and a parameter adaptive law is constructed to approximate the time-varying operating resistance coefficient.Findings–The simulation results show that compared with proportional integral derivative(PID)control and ordinary sliding mode control,the control accuracy of the proposed algorithm in terms of speed is,respectively,improved by 25%and 75%.The error frequency and fluctuation range of the proposed algorithm are reduced in the position error control,the error value tends to 0,and the operation trend tends to be consistent.Therefore,the control method can improve the control accuracy of the system and prove that it has strong immunity.Originality/value–The algorithm can reduce the influence of external interference in the actual operating environment,realize efficient and stable tracking of trains,and ensure the safety of train control.