期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Numerical investigation of geostress influence on the grouting reinforcement effectiveness of tunnel surrounding rock mass in fault fracture zones
1
作者 Xiangyu Xu Zhijun Wu +3 位作者 Lei Weng Zhaofei Chu Quansheng Liu Yuan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期81-101,共21页
Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.I... Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed. 展开更多
关键词 Numerical manifold method(NMM) Grouting reinforcement Geostress condition Fault fracture zone Tunnel excavation
下载PDF
Formation mechanism and height calculation of the caved zone and water-conducting fracture zone in solid backfill mining 被引量:5
2
作者 Lei Li Fengming Li +2 位作者 Yong Zhang Daming Yang Xue Liu 《International Journal of Coal Science & Technology》 EI 2020年第1期208-215,共8页
To study the heights of the caved zone and water-conducting fracture zone in backfill mining,the failure mechanism of strata during backfill mining was analyzed,and a method for determining the heights of the two zone... To study the heights of the caved zone and water-conducting fracture zone in backfill mining,the failure mechanism of strata during backfill mining was analyzed,and a method for determining the heights of the two zones was proposed based on key strata theory.The movement and failure regularity of the strata above the backfilling panel were revealed through numerical simulation.Considering the geologic conditions of the CT101 backfilling panel,the height of the fracture zone was determined using the proposed method along with empirical calculation,numerical simulation,and borehole detection.The results of the new calculation method were similar to in situ measurements.The traditional empirical formula,which is based on the equivalent mining height model,resulted in large errors during calculation.The findings indicate the reliability of the new method and demonstrate its significance for creating reference data for related studies. 展开更多
关键词 Backfill mining Strata failure Key strata Heights of caved and fracture zones
下载PDF
Height prediction of water-flowing fracture zone with a geneticalgorithm support-vector-machine method 被引量:3
3
作者 Enke Hou Qiang Wen +2 位作者 Zhenni Ye Wei Chen Jiangbo Wei 《International Journal of Coal Science & Technology》 EI CAS 2020年第4期740-751,共12页
Prediction of the height of a water-flowing fracture zone(WFFZ)is the foundation for evaluating water bursting conditions on roof coal.By taking the Binchang mining area as the study area and conducting an in-depth st... Prediction of the height of a water-flowing fracture zone(WFFZ)is the foundation for evaluating water bursting conditions on roof coal.By taking the Binchang mining area as the study area and conducting an in-depth study of the influence of coal seam thickness,burial depth,working face length,and roof category on the height of a WFFZ,we proposed that the proportion of hard rock in different roof ranges should be used to characterise the influence of roof category on WFFZ height.Based on data of WFFZ height and its influence index obtained from field observations,a prediction model is established for WFFZ height using a combination of a genetic algorithm and a support-vector machine.The reliability and superiority of the prediction model were verified by a comparative study and an engineering application.The results show that the main factors affecting WFFZ height in the study area are coal seam thickness,burial depth,working face length,and roof category.Compared with multiple-linear-regression and back-propagation neural-network approaches,the height-prediction model of the WFFZ based on a genetic-algorithm support-vector-machine method has higher training and prediction accuracy and is more suitable for WFFZ prediction in the mining area. 展开更多
关键词 Water-flowing fracture zone Roof category Proportion of hard rock Genetic algorithm Support-vector machine
下载PDF
Fractal Feature of Western Fracture Zone in Xikuangshan Antimony Mine and its Geological Significance 被引量:2
4
作者 TANG Shi-jia GAO Guang-ming +1 位作者 PENG En-sheng SUN Zhen-jia 《Journal of Central South University》 SCIE EI CAS 2000年第4期212-215,共4页
In Xikuangshan antimony ore-field, the western fracture zone is a composite of major fault, F75, and its secondary faults, such as F71, F72 and F3 etc.. On plane, the fracture zone scatters from southwest to northeast... In Xikuangshan antimony ore-field, the western fracture zone is a composite of major fault, F75, and its secondary faults, such as F71, F72 and F3 etc.. On plane, the fracture zone scatters from southwest to northeast, and concentrates from upper to deeper level on profile. All ore-bodies exist in the carbonate of footwall of the major fault or that of the footwall of its secondary faults. From 480 m and 320 m to 120 m level, the fractal dimensional number of the fault system decreases from 1.482 2 and 1.448 6 to 1.339 2, which indicates the form of fracture zone becoming more simple at deeper level. And in five sub-ranges, the III and IV sub-ranges are the known area, and the I, II and V sub-ranges are unknown. The fractal studies of the western fracture zone in these sub-ranges show that the fractal dimensional numbers of the I and II, being 1.201 5 and 1.278 0, respectively, are smaller than that of the III and IV, being 1.475 9 and 1.576 9, respectively; and that of the V, being 1.571 2, keeps with that of the III, IV sub-ranges. So mineralization is not well in I and II sub-ranges, and V sub-range is the best to benefit mineralization. 展开更多
关键词 FRACTAL fractal dimension fracture zone Xikuangshan antimony-mine
下载PDF
Early Pliocene Paleoceanography of the Vityaz Fracture Zone,Central Indian Ridge
5
作者 M.V.S.GUPTHA Ranadip BANERJEE +3 位作者 Lina P.MERGULHAO Priyanka BANERJEE G.PARTHIBAN Manish TEWARI 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第4期614-621,共8页
Planktic foraminifera from the calcareous substrate of a ferromanganese crust in the Vityaz Fracture Zone (VFZ), Central Indian Ridge were studied to reconstruct the early Pliocene paleoceanography of this region. E... Planktic foraminifera from the calcareous substrate of a ferromanganese crust in the Vityaz Fracture Zone (VFZ), Central Indian Ridge were studied to reconstruct the early Pliocene paleoceanography of this region. Eleven species of planktic foraminifera were encountered, among them Globorotalia menardii, Neogloboquadrina dutertrei, Globigerina bulloides and Globigerinoides tuber are prominent. Predominance of N. dutertrei in the top 3 cm of the carbonate substrate is attributed to an influx of fresh water which eventually triggered their productivity by increasing the nutrient level. The presence of G. bulloides and G. menardii in significant proportions in deeper layers suggests the prevalence of open ocean upwelling. The bulk chemical compositions of the substrate at different depth intervals indicates higher enrichment of trace metals in the upper sections which could have been supplied through oceanic water by the chemical weathering of terrestrial matter during the peak of Pliocene Asian monsoon. Thus, it is concluded that during the early Pliocene the biogenic components of the substrate were distinctly contributed by both upwelling and productivity triggered by an influx of fresh water originating from the intensification of the Asian monsoon during the early Pliocene Period. 展开更多
关键词 Central Indian Ridge Vityaz fracture zone ferromanganese crust biogenic bloom freshwater influx Neogene climate change SPORES Asian monsoon
下载PDF
Response of underground pipeline through fault fracture zone to random ground motion
6
作者 Dai Wang Zhuobin Wei Jianwen Liang 《Earthquake Science》 CSCD 2011年第4期351-363,共13页
It is assumed that a pipeline is laid through a vertical fault fracture zone, and is excited by seismic ground motion modelled as stationary stochastic process. For horizontal incidence of waves, the cross-PSD (Power... It is assumed that a pipeline is laid through a vertical fault fracture zone, and is excited by seismic ground motion modelled as stationary stochastic process. For horizontal incidence of waves, the cross-PSD (Power Spectral Density) function is developed using wave propagation theory, while for vertical incidence of waves the cross-PSD function is composed by auto-PSD model, coherence model and site response model. As the seismic input, the eross-PSD function is used to calculate the the axial and lateral seismic responses of underground pipeline through the fracture zone. The results show that the incident directions of seismic waves, width and soil property of the fracture zone have great influence on underground pipeline. It is suggested that the flexible joints with appropriate stiffness should be added into the pipeline near the interfaces between the fracture zone and the surrounded media. 展开更多
关键词 fault fracture zone flexible joint underground pipeline seismic excitation
下载PDF
Stresses and Shear Fracture Zone of Jinshazhou Tunnel Surrounding Rock in Rich Water Region
7
作者 郑俊杰 楼晓明 《Journal of Southwest Jiaotong University(English Edition)》 2008年第3期233-241,共9页
Field evidence has shown that large-scale and unstable discontinuous planes in the rock mass surrounding tunnels in rich water region are probably generated after excavation. The tunnel surrounding rock was divided in... Field evidence has shown that large-scale and unstable discontinuous planes in the rock mass surrounding tunnels in rich water region are probably generated after excavation. The tunnel surrounding rock was divided into three zones, including elastic zone, plastic damage zone and shear fracture zone for assessing the stability of the tunnel surrounding rock. By local hydrogeology, the stresses of surrounding rock of Jinshazhou circular tunnel was analyzed and the stress solutions on the elastic and plastic damage zones were obtained by applying the theories of fluid-solid coupling and elasto-plastic damage mechanics. The shear fracture zone generated by joints was studied and its range was determined by using Molar-Coulomb strength criterion. Finally, the correctness of the theoretical results was validated by comparing the scopes of shear fracture zones calculated in this paper with those from literature. 展开更多
关键词 JOINTS Pore water pressure Shear fracture zone STRESS Plastic damage zone
下载PDF
Estimation of main rheological parameters for Pangxidong-Jinkeng structural fracture zone and Qinzhou-Hangzhou metallogenetic belt in South China
8
作者 HE Junguo 《Global Geology》 2013年第3期121-129,共9页
The mylonites occurred in the fracture zones are studied by dynamically recrystallized quartz grains.The natural microstructures in mylonites are simulated and the deformation conditions of mylonitization are estimate... The mylonites occurred in the fracture zones are studied by dynamically recrystallized quartz grains.The natural microstructures in mylonites are simulated and the deformation conditions of mylonitization are estimated by fractal analysis,recrystallized grain size paleopiezometer and flow laws of quartzite.Depending on fractal analysis,the deformation temperature of mylonitization is approximately 600℃,which presents high greenschist facies to low amphibolite facies.The mylonitization occurred at differential stresses of 9.1--10.7MPa(lower limits).Compared with extrapolation of quartzite flow laws and estimates of fractal analysis,the strain rate of mylonitization is under 10-13.8/s. 展开更多
关键词 recrystallized quartz grains MYLONITE fractal analysis deformation condition Pangxidong-Jinkeng structural fracture zone
下载PDF
Imaging Rock Density Distribution beneath Liwa Fracture Zone in the Southern Part of the Great Sumatran Fault System, Indonesia
9
作者 Djedi S. Widarto Tedi Yudistira +3 位作者 Jun-Ichi Nishida Ikuo Katsura Eddy Z. Gaffar Susumu Nishimura 《International Journal of Geosciences》 2016年第4期598-614,共17页
We have imaged rock density distribution beneath Liwa fracture zone in the southern part of the the Sumatran Fault Zone by modelling and inverting Bouguer gravity data in two-and three-dimensional environments, respec... We have imaged rock density distribution beneath Liwa fracture zone in the southern part of the the Sumatran Fault Zone by modelling and inverting Bouguer gravity data in two-and three-dimensional environments, respectively. The purpose of this study is aimed to figure out the subsurface distribution of rock densities associated with subsurface basement structure representing the evidence of trans-tensional tectonic product in the SF. In the gravity modeling, to eliminate distortions to the measured gravity values before modelling and inverting the data, Bouguer anomalies obtained in field measurements are reduced to the horizontal plane of z = +800 m as a representation of the average elevation in Liwa. For the inversion, we used algorithm implementing depth-and minimum volume weighting parameters in order to obtain a smooth model with better vertical resolution. The two-dimensional models show clearly surface topography of the basement rocks and the presence of normal faults. The reduced Bouguer anomaly of +800 m elevation shows the presence of structural lineaments extending primarily in a northwest-southeast direction, parallel to Sumatran Fault Zone and older graben faults showing a negative flower structure. From the three-dimensional inversion, the model illustrates an increase of density contrast, lower values being found near the surface and higher values in the deeper parts. The lower density contrast of 0.15 to 0.3 g/cm<sup>3</sup> found in the rock groups at depths of 2 km and less is characteristic of relatively homogeneous and poorly compacted rocks. Rocks with moderate to high density contrast (>1.0 g/cm<sup>3</sup>) are recognized at depths of over 2 km. This model suggests a change of basement morphology as a function of depth, and delineates structural lineaments extending in northwest-southeast direction. This study supports the previous thought that Liwa area is underlain by graben structures, formed by trans-tensional tectonic events. Higher-density Tertiary volcanic breccia and lower-density Quaternary volcanic products of the Ranau Formation form the basement rocks and the overlying younger sediments, respectively. 展开更多
关键词 Gravity Imaging Rock Density fracture zone 2D Modeling 3D Inversion Density Contrast
下载PDF
Unconfined compressive strength and failure behaviour of completely weathered granite from a fault zone
10
作者 DU Shaohua MA Jinyin +1 位作者 MA Liyao ZHAO Yaqian 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2140-2158,共19页
Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests... Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition. 展开更多
关键词 Fault fracture zone Completely weathered granite(CWG) Unconfined compression strength(UCS) Multiple nonlinear regression model
下载PDF
Failure responses of rock tunnel faces during excavation through the fault-fracture zone 被引量:3
11
作者 Zeyu Li Hongwei Huang +1 位作者 Mingliang Zhou Dongming Zhang 《Underground Space》 SCIE EI CSCD 2023年第3期166-181,共16页
It is essential to cast light on the construction risks in tunnel excavations through the fault-fracture zone(FFZ).This study adopts the material point method(MPM)to simulate the failure responses of a rock tunnel fac... It is essential to cast light on the construction risks in tunnel excavations through the fault-fracture zone(FFZ).This study adopts the material point method(MPM)to simulate the failure responses of a rock tunnel face during excavation through the FFZ.A numerical study was conducted to compare a physical model test and validate the feasibility of using the MPM in simulating tunnel face failure.One hundred ninety numerical simulation cases were constructed to represent a rock tunnel excavation project with different site con-figurations.The simulation results suggest that the cohesion and the friction angle significantly influence failure responses.The tunnel cover depth can magnify the failure responses,and the FFZ thickness significantly affects the mobilized rock mass volume when the FFZ consists of a weak rock mass.The numerical simulation results suggest three deformation patterns:face bulge,partial failure,and slide collapse.The failure responses can be characterized by stress arch,slip surface,angle of reposing,and influence range.The insights suggested by the face failure responses during excavation through the FFZ can aid field engineers in determining the scope of possible damage,and in establishing emergency measures to minimize losses if such failure occurs. 展开更多
关键词 Tunnel face failure Rock tunnel excavation Large deformation fracture fault zone Material point method
原文传递
A method for predicting the water-flowing fractured zone height based on an improved key stratum theory 被引量:1
12
作者 Jianghui He Wenping Li +3 位作者 Kaifang Fan Wei Qiao Qiqing Wang Liangning Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期61-71,共11页
In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation... In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method. 展开更多
关键词 Coal mining Water-flowing fractured zone height Prediction method Improved key stratum theory
下载PDF
Relationship between Remotely Sensed Vegetation Change and Fracture Zones Induced by the 2008 Wenchuan Earthquake, China 被引量:5
13
作者 王玲 田兵伟 +1 位作者 Alaa Masoud Katsuaki Koike 《Journal of Earth Science》 SCIE CAS CSCD 2013年第2期282-296,共15页
The Wenchuan earthquake triggered cascading disasters of landslides and debris flows that caused severe vegetation damage. Fracture zones can affect geodynamics and spatial pattern of vegetation damage. A segment trac... The Wenchuan earthquake triggered cascading disasters of landslides and debris flows that caused severe vegetation damage. Fracture zones can affect geodynamics and spatial pattern of vegetation damage. A segment tracing algorithm method was applied for identifying the regional fracture system through lineament extractions from a shaded digital elevation model with 25 m mesh for southern Wenchuan. Remote sensing and geographic information system techniques were used to analyze the spatiotemporal vegetation pattern. The relationship between vegetation type identified from satellite images and lineament density was used to characterize the distribution patterns of each vegetation type according to fracture zones. Broad-leaved forest, mixed forest, and farmland persist in areas with moderate lineament density. Deciduous broad-leaved and coniferous forest persists in less frac- tured areas. Shrub and meadow seem to be relatively evenly distributed across all lineament densities.Meadow, farmland, and shrub persist in the fractured areas. Changes of spatial structure and correlation between vegetation patterns before and after the earthquake were examined using semivariogram analysis of normalized difference vegetation indices derived from Landsat enhanced thematic mapper images. The sill values of the semivariograms show that the spatial heterogeneity of vegetation covers increased after the earthquake. Moreover, the anisotropic behaviors of the semivariograms coincide with the vegetation changes due to the strikes of fracture zones. 展开更多
关键词 fracture zone vegetation pattern LINEAMENT remote sensing GEOSTATISTICS
原文传递
Seismic response of tunnel near fault fracture zone under incident SV waves 被引量:1
14
作者 Zhongxian Liu Jiaqiao Liu +3 位作者 Qiang Pei Haitao Yu Chengcheng Li Chengqing Wu 《Underground Space》 SCIE EI 2021年第6期695-708,共14页
This study investigated the impact of a non-causative fault on the dynamic response of a nearby lined tunnel under the incidence of plane SV waves using the indirect boundary element method.The effects of several crit... This study investigated the impact of a non-causative fault on the dynamic response of a nearby lined tunnel under the incidence of plane SV waves using the indirect boundary element method.The effects of several critical parameters,such as the incident frequency,the inclination degree of the fault,the distance between the fault and the tunnel on the hoop stress of the lined inner and outer walls,were explored intensively.The numerical results indicated that the non-causative fault could significantly change the hoop stress distribution of inner and outer surfaces of the tunnels.In general,for the vertically incident seismic waves,when the tunnel was located in the foot wall(under the fault),the hoop stress within the tunnel was significantly greater than that of the tunnels in the non-fault half space,with an amplification factor of up to 117%.The amplification effect became more pronounced as the fault dip angle increased.However,when the tunnel was located in the hanging wall(above the fault),the non-causative fault could produce a significant shielding effect on the dynamic response of the tunnel under high frequency wave incidence,with the reduction of hoop stress being up to 81%.For lowfrequency waves,though,the fault could lead to an increase of the hoop stress of the tunnel of up to 152%.The research results will provide a reference for the seismic design and safety protection of underground structures in non-causative fault sites. 展开更多
关键词 Non-causative fault Indirect boundary element method Fault fracture zone Lined tunnel
原文传递
Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams 被引量:7
15
作者 Su Ben-Yu Yue Jian-Hua 《Applied Geophysics》 SCIE CSCD 2017年第2期216-224,322,共10页
Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when... Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production. 展开更多
关键词 water-conducting fractured zones in coal seams coalfield goaf electrical anisotropy surface roughness formation water resistivity formation pressure
下载PDF
Predicting the height of water-flow fractured zone during coal mining under the Xiaolangdi Reservoir 被引量:6
16
作者 XU Zhimin SUN Yajun +2 位作者 DONG Qinghong ZHANG Guowei LI Shi 《Mining Science and Technology》 EI CAS 2010年第3期434-438,共5页
It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu... It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs. 展开更多
关键词 coal mining under reservoir water-flow fractured zone development law water inrush of mine predicting model
下载PDF
Fractured zone height of longwall mining and its effects on the overburden aquifers 被引量:12
17
作者 Guo Wenbing Zou Youfeng Hou Quanlin 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期603-606,共4页
As mining depth becomes deeper and deeper,the possibility of undermining overburden aquifers is increasing.It is very important for coal miners to undertake studies on the height of fractured zone during longwall mini... As mining depth becomes deeper and deeper,the possibility of undermining overburden aquifers is increasing.It is very important for coal miners to undertake studies on the height of fractured zone during longwall mining and the effects of longwall mining on the underground water while mining under surface water bodies and underground aquifers.In order to study this problem,piezometers for monitoring underground water levels were installed above the longwall panels in an American coalmine.Large amounts of pre-mining,during mining and post-mining monitoring data were collected.Based on the data,the heights of fractured zones were obtained and the effects of longwall mining on the underground water were studied.The results demonstrate that when the piezometer monitoring wells had an interburden thickness of less than 72.7 m,the groundwater level decreased immediately to immeasurable levels and the wells went dry after undermining the face of longwall.The height of the fractured zone is 72.7-85.3 m in the geological and mining conditions.The results also show that the calculated values of fractured zones by the empirical formulae used in China are smaller than the actual results.Therefore,it is not always safe to use them for analyses while mining under water bodies. 展开更多
关键词 Longwall mining fractured zone Mining under water body Overburden aquifer
下载PDF
Structural failure mechanism and strengthening method of fracture plugging zone for lost circulation control in deep naturally fractured reservoirs 被引量:3
18
作者 XU Chengyuan YAN Xiaopeng +2 位作者 KANG Yili YOU Lijun ZHANG Jingyi 《Petroleum Exploration and Development》 2020年第2期430-440,共11页
Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failu... Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failure pattern of plugging zone is developed to reveal the plugging zone failure mechanisms in deep, high temperature, high pressure, and high in-situ stress environment. Based on the fracture plugging zone strength model, key performance parameters are determined for the optimal selection of loss control material(LCM). Laboratory fracture plugging experiments with new LCM are carried out to evaluate the effect of the key performance parameters of LCM on fracture plugging quality. LCM selection strategy for fractured reservoirs is developed. The results show that the force chain formed by LCMs determines the pressure stabilization of macro-scale fracture plugging zone. Friction failure and shear failure are the two major failure patterns of fracture plugging zone. The strength of force chain depends on the performance of micro-scale LCM, and the LCM key performance parameters include particle size distribution, fiber aspect ratio, friction coefficient, compressive strength, soluble ability and high temperature resistance. Results of lab experiments and field test show that lost circulation control quality can be effectively improved with the optimal material selection based on the extracted key performance parameters of LCMs. 展开更多
关键词 deep layer fractured reservoir lost circulation fracture plugging zone multi-scale structure strength and stability loss control material
下载PDF
Analysis of fracture process zone in brittle rock subjected to shear-compressive loading 被引量:1
19
作者 周德泉 陈枫 +1 位作者 曹平 马春德 《Journal of Central South University of Technology》 2005年第2期209-213,共5页
An analytical expression for the prediction of shear-compressive fracture process zone(SCFPZ) is derived by using a proposed local strain energy density criterion, in which the strain energy density is separated into ... An analytical expression for the prediction of shear-compressive fracture process zone(SCFPZ) is derived by using a proposed local strain energy density criterion, in which the strain energy density is separated into the dilatational and distortional strain energy density, only the former is considered to contribute to the brittle fracture of rock in different loading cases. The theoretical prediction by this criterion shows that the SCFPZ is of asymmetric mulberry leaf in shape, which forms a shear-compression fracture kern. Dilatational strain energy density along the boundary of SCFPZ reaches its maximum value. The dimension of SCFPZ is governed by the ratio of K_Ⅱ to (K_Ⅰ.) The analytical results are then compared with those from literatures and the tests conducted on double edge cracked Brazilian disk subjected to diametrical compression. The obtained results are useful to the prediction of crack extension and to nonlinear analysis of shear-compressive fracture of brittle rock. 展开更多
关键词 brittle rock shear-compressive loading fracture process zone
下载PDF
In-situ observations of damage-fracture evolution in surrounding rock upon unloading in 2400-m-deep tunnels 被引量:11
20
作者 Haosen Guo Qiancheng Sun +2 位作者 Guangliang Feng Shaojun Li Yaxun Xiao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期437-446,共10页
The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractu... The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction. 展开更多
关键词 Deep tunnel fractured zone Damaged zone In-situ observation Unloading of rock mass
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部