期刊文献+
共找到85,240篇文章
< 1 2 250 >
每页显示 20 50 100
Construction of carbonate reservoir knowledge base and its application in fracture-cavity reservoir geological modeling 被引量:2
1
作者 HE Zhiliang SUN Jianfang +3 位作者 GUO Panhong WEI Hehua LYU Xinrui HAN Kelong 《Petroleum Exploration and Development》 CSCD 2021年第4期824-834,共11页
To improve the efficiency and accuracy of carbonate reservoir research,a unified reservoir knowledge base linking geological knowledge management with reservoir research is proposed.The reservoir knowledge base serves... To improve the efficiency and accuracy of carbonate reservoir research,a unified reservoir knowledge base linking geological knowledge management with reservoir research is proposed.The reservoir knowledge base serves high-quality analysis,evaluation,description and geological modeling of reservoirs.The knowledge framework is divided into three categories:technical service standard,technical research method and professional knowledge and cases related to geological objects.In order to build a knowledge base,first of all,it is necessary to form a knowledge classification system and knowledge description standards;secondly,to sort out theoretical understandings and various technical methods for different geologic objects and work out a technical service standard package according to the technical standard;thirdly,to collect typical outcrop and reservoir cases,constantly expand the content of the knowledge base through systematic extraction,sorting and saving,and construct professional knowledge about geological objects.Through the use of encyclopedia based collaborative editing architecture,knowledge construction and sharing can be realized.Geological objects and related attribute parameters can be automatically extracted by using natural language processing(NLP)technology,and outcrop data can be collected by using modern fine measurement technology,to enhance the efficiency of knowledge acquisition,extraction and sorting.In this paper,the geological modeling of fracture-cavity reservoir in the Tarim Basin is taken as an example to illustrate the construction of knowledge base of carbonate reservoir and its application in geological modeling of fracture-cavity carbonate reservoir. 展开更多
关键词 knowledge management reservoir knowledge base fracture-cavity reservoir geological modeling CARBONATES paleo-underground river system Tahe oilfield Tarim Basin
下载PDF
Grading evaluation and prediction of fracture-cavity reservoirs in Cambrian Longwangmiao Formation of Moxi area,Sichuan Basin,SW China
2
作者 WANG Bei LIU Xiangjun SIMA Liqiang 《Petroleum Exploration and Development》 2019年第2期301-313,共13页
By using core, thin section, well logging, seismic, well testing and other data, the reservoir grading evaluation parameters were selected, the classification criterion considering multiple factors for carbonate reser... By using core, thin section, well logging, seismic, well testing and other data, the reservoir grading evaluation parameters were selected, the classification criterion considering multiple factors for carbonate reservoirs in this area were established, and the main factors affecting the development of high quality reservoir were determined. By employing Formation MicroScanner Image(FMI) logging fracture-cavity recognition technology and reservoir seismic waveform classification technology, the spatial distribution of reservoirs of all grades were predicted. On the basis of identifying four types of reservoir space developed in the study area by mercury injection experiment, a classification criterion was established using four reservoir grading evaluation parameters, median throat radius, effective porosity and effective permeability of fracture-cavity development zone, relationship between fracture and dissolution pore development and assemblage, and the reservoirs in the study area were classified into grade I high quality reservoir of fracture and cavity type, grade II average reservoir of fracture and porosity type, grade Ⅲ poor reservoir of intergranular pore type. Based on the three main factors controlling the development of high quality reservoir, structural location, sedimentary facies and epigenesis, the distribution of the 3 grades reservoirs in each well area and formation were predicted using geophysical response and percolation characteristics. Follow-up drilling has confirmed that the classification evaluation standard and prediction methods established are effective. 展开更多
关键词 Sichuan Basin Moxi area CAMBRIAN Longwangmiao Formation carbonate rock fracture-cavity reservoir reservoir GRADING EVALUATION reservoir PREDICTION
下载PDF
Numerical analysis of the hydraulic fracture communication modes in fracture-cavity reservoirs
3
作者 Jia-Wei Kao Shi-Ming Wei +1 位作者 Wen-Zhi Wang Yan Jin 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2227-2239,共13页
The fracture-cavity carbonate reservoirs in the Tahe Oilfield in China are mainly exploited by fracturing.We need the hydraulic fractures to communicate with caves to create a flow channel.However,due to the existence... The fracture-cavity carbonate reservoirs in the Tahe Oilfield in China are mainly exploited by fracturing.We need the hydraulic fractures to communicate with caves to create a flow channel.However,due to the existence of the fracture-cavity systems,the hydraulic fracture propagation morphology is complicated,while the propagation characteristics are not clear.To analyze the hydraulic fracture propagation in fracture-cavity carbonate formations,based on the discontinuous discrete fracture model,we developed a solid-seepage-freeflow coupled fracturing model for fracture-cavity formations,which can simulate the complex interaction behavior of fractures and caves.Based on the simulation results,we found the interaction rule between hydraulic fractures and fracture-cavity systems:the stress concentration around caves is the main factor that determines the fracture propagation path.Deflection due to stress concentration is usually not conducive to communication,while natural fractures distributed around caves could break the rejection action.Increasing the hydraulic energy in the hydraulic fracture can make fracture propagate directly and reduce the influence of deflection.The steering fracture formed by temporary plugging is beneficial to the communication of fracture-cavity systems in the non-principal stress direction.According to the simulation results of different fracture-cavity characteristics,we raised four optimization communication modes for fracture-cavity carbonate formation to provide references for fracturing optimization design and parameter optimization. 展开更多
关键词 fracture-cavity carbonate formation Hydraulic fracture propagation Numerical simulation fracture-cave communication Discontinuous discrete fracture model
下载PDF
Visualization and characterization of experimental hydraulic fractures interacting with karst fracture-cavity distributions
4
作者 Hanzhi Yang Xin Chang +4 位作者 Chunhe Yang Wuhao Guo Lei Wang Guokai Zhao Yintong Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1667-1683,共17页
Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and explo... Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and exploitation.Proppant fracturing is considered as the best method for exploiting carbonate reservoirs;however,previous studies primarily focused on the effects of individual types of geological formations,such as natural fractures or cavities,on fracture propagation.In this study,true-triaxial physical simulation experiments were systematically performed under four types of stress difference conditions after the accurate prefabrication of four types of different fracture-cavity distributions in artificial samples.Subsequently,the interaction mechanism between the hydraulic fractures and fracture-cavity structures was systematically analyzed in combination with the stress distribution,cross-sectional morphology of the main propagation path,and three-dimensional visualization of the overall fracture network.It was found that the propagation of hydraulic fractures near the cavity was inhibited by the stress concentration surrounding the cavity.In contrast,a natural fracture with a smaller approach angle(0°and 30°)around the cavity can alleviate the stress concentration and significantly facilitate the connection with the cavity.In addition,the hydraulic fracture crossed the natural fracture at the 45°approach angle and bypassed the cavity under higher stress difference conditions.A new stimulation effectiveness evaluation index was established based on the stimulated reservoir area(SRA),tortuosity of the hydraulic fractures(T),and connectivity index(CI)of the cavities.These findings provide new insights into the fracturing design of carbonate reservoirs. 展开更多
关键词 Karst fracture-cavity reservoir Fracturing experiment Fracture propagation Cross-sectional morphology Stimulation effectiveness
下载PDF
Application of Spectral Decomposition to Detection of Fracture-Cavity Carbonate Reservoir Beds in the Tahe OUfield,Tarim Basin,NW China 被引量:1
5
作者 LIU Xiaoping YANG Xiaolan +1 位作者 ZHANG Yazhong HAN Long 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第3期530-536,共7页
Ordovician fracture-cavity carbonate reservoir beds are the major type of producing formations in the Tahe oilfield, Tarim Basin. The seismic responses of these beds clearly changes depending on the different distance... Ordovician fracture-cavity carbonate reservoir beds are the major type of producing formations in the Tahe oilfield, Tarim Basin. The seismic responses of these beds clearly changes depending on the different distance of the fracture-cavity reservoir bed from the top of the section. The seismic reflection becomes weak or is absent when the fracture-cavity reservoir beds are less than 20 ms below the top Ordovician. The effect on top Ordovician reflection became weaker with deeper burial of fracture-cavity reservoir beds but the developed deep fracture-cavity reservoir beds caused stronger reflection in the interior of the Ordovician. This interior reflection can be divided into strong long-axis, irregular and bead string reflections, and was present 80 ms below the top Ordovician. Aimed at understanding reflection characteristics, the spectral decomposition technique, which uses frequency to "tune-in" bed thickness, was used to predict Ordovician fracture-cavity carbonate formations in the Tahe oilfield. Through finely adjusting the processing parameters of spectral decomposition, it was found that the slice at 30 Hz of the tuned data cube can best represent reservoir bed development. Two large N-S-trending strong reflection belts in the mid-western part of the study area along wells TK440- TK427-TK417B and in the eastern part along wells TK404-TK409 were observed distinctly on the 30 Hz slice and 4-D time-frequency data cube carving. A small N-S trending reflection belt in the southern part along wells T403-TK446B was also clearly identified. The predicted reservoir bed development area coincides with the fracture-cavities connection area confirmed by drilling pressure testing results. Deep karst cavities occur basically in three reservoir bed-development belts identified by the Ordovician interior strong reflection. Spectral decomposition proved to be a useful technique in identifying fracture-cavity reservoir beds. 展开更多
关键词 Seismic response tuning cube 4-D time-frequency data cube fracture-cavity reservoir bed Ordovician carbonate Tahe oilfield Xinjiang
下载PDF
A Numerical Study on the Propagation Mechanisms of Hydraulic Fractures in Fracture-Cavity Carbonate Reservoirs
6
作者 Fang Shi Daobing Wang Xiaogang Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第5期575-598,共24页
Field data suggests that carbonate reservoirs contain abundant natural fractures and cavities.The propagation mechanisms of hydraulic fractures in fracture-cavity reservoirs are different from conventional reservoirs ... Field data suggests that carbonate reservoirs contain abundant natural fractures and cavities.The propagation mechanisms of hydraulic fractures in fracture-cavity reservoirs are different from conventional reservoirs on account of the stress concentration surrounding cavities.In this paper,we develop a fully coupled numerical model using the extended finite element method(XFEM)to investigate the behaviors and propagation mechanisms of hydraulic fractures in fracture-cavity reservoirs.Simulation results show that a higher lateral stress coefficient can enhance the influence of the natural cavity,causing a more curved fracture path.However,lower confining stress or smaller in-situ stress difference can reduce this influence,and thus contributes to the penetration of the hydraulic fracture towards the cavity.Higher fluid viscosity and high fluid pumping rate are both able to attenuate the effect of the cavity.The frictional natural fracture connected to the cavity can significantly change the stress distribution around the cavity,thus dramatically deviates the hydraulic fracture from its original propagation direction.It is also found that the natural cavity existing between two adjacent fracturing stages will significantly influence the stress distribution between fractures and is more likely to result in irregular propagation paths compared to the case without a cavity. 展开更多
关键词 Hydraulic fracturing fracture-cavity reservoir crack propagation XFEM
下载PDF
Hydrocarbon accumulation characteristics in basement reservoirs and exploration targets of deep basement reservoirs in onshore China
7
作者 WANG Zecheng JIANG Qingchun +10 位作者 WANG Jufeng LONG Guohui CHENG Honggang SHI Yizuo SUN Qisen JIANG Hua ABULIMITI Yiming CAO Zhenglin XU Yang LU Jiamin HUANG Linjun 《Petroleum Exploration and Development》 SCIE 2024年第1期31-43,共13页
Based on the global basement reservoir database and the dissection of basement reservoirs in China,the characteristics of hydrocarbon accumulation in basement reservoirs are analyzed,and the favorable conditions for h... Based on the global basement reservoir database and the dissection of basement reservoirs in China,the characteristics of hydrocarbon accumulation in basement reservoirs are analyzed,and the favorable conditions for hydrocarbon accumulation in deep basement reservoirs are investigated to highlight the exploration targets.The discovered basement reservoirs worldwide are mainly buried in the Archean and Precambrian granitic and metamorphic formations with depths less than 4500 m,and the relatively large reservoirs have been found in rift,back-arc and foreland basins in tectonic active zones of the Meso-Cenozoic plates.The hydrocarbon accumulation in basement reservoirs exhibits the characteristics in three aspects.First,the porous-fractured reservoirs with low porosity and ultra-low permeability are dominant,where extensive hydrocarbon accumulation occurred during the weathering denudation and later tectonic reworking of the basin basement.High resistance to compaction allows the physical properties of these highly heterogeneous reservoirs to be independent of the buried depth.Second,the hydrocarbons were sourced from the formations outside the basement.The source-reservoir assemblages are divided into contacted source rock-basement and separated source rock-basement patterns.Third,the abnormal high pressure in the source rock and the normal–low pressure in the basement reservoirs cause a large pressure difference between the source rock and the reservoirs,which is conducive to the pumping effect of hydrocarbons in the deep basement.The deep basement prospects are mainly evaluated by the factors such as tectonic activity of basement,source-reservoir combination,development of large deep faults(especially strike-slip faults),and regional seals.The Precambrian crystalline basements at the margin of the intracontinental rifts in cratonic basins,as well as the Paleozoic folded basements and the Meso-Cenozoic fault-block basements adjacent to the hydrocarbon generation depressions,have favorable conditions for hydrocarbon accumulation,and thus they are considered as the main targets for future exploration of deep basement reservoirs. 展开更多
关键词 basement reservoir granite reservoir source-reservoir assemblage pumping effect strike-slip fault deep basement reservoir
下载PDF
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs
8
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture Deep and ultra-deep reservoir Fracture conductivity Fracturing fluid Hydraulic fracturing reservoir damage
下载PDF
Prediction of Fracture-Cavity System in Carbonate Reservoir: A Case Study in the Tahe Oilfield 被引量:14
9
作者 WangShixing GuanLuping ZhuHailong 《Applied Geophysics》 SCIE CSCD 2004年第1期56-62,共7页
The carbonate rocks in Tahe oilfield, which suffered from multi-period polycycle karstification and structure deformation, are heterogeneous reservoirs that are rich in pores, cavities,and fractures. The reservoirs ar... The carbonate rocks in Tahe oilfield, which suffered from multi-period polycycle karstification and structure deformation, are heterogeneous reservoirs that are rich in pores, cavities,and fractures. The reservoirs are diversified in scale, space configuration, and complex in filling. For this kind of reservoir, a suite of seismic prestack or poststack prediction techniques has been developed based on the separation of seismic wave fields. Through cross-verification of the estimated results,a detailed description of palaeogeomorphology and structural features such as pores, cavities, and fractures in unaka has been achieved, the understanding of the spatial distribution of reservoir improved. 展开更多
关键词 碳酸盐岩 油田 喀斯特 孔隙结构 地震勘探
下载PDF
Fine quantitative characterization of high-H2S gas reservoirs under the influence of liquid sulfur deposition and adsorption
10
作者 LI Tong MA Yongsheng +3 位作者 ZENG Daqian LI Qian ZHAO Guang SUN Ning 《Petroleum Exploration and Development》 SCIE 2024年第2期416-429,共14页
In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-p... In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-pressure core displacement experiments.Fine quantitative characterization of the cores in three steady states(original,after sulfur injection,and after gas flooding)was carried out using the nuclear magnetic resonance(NMR)transverse relaxation time spectrum and imaging,X-ray computer tomography(CT)of full-diameter cores,basic physical property testing,and field emission scanning electron microscopy imaging.The loss of pore volume caused by sulfur deposition and adsorption mainly comes from the medium and large pores with sizes bigger than 1000μm.Liquid sulfur has a stronger adsorption and deposition ability in smaller pore spaces,and causes greater damage to reservoirs with poor original pore structures.The pore structure of the three types of carbonate reservoirs shows multiple fractal characteristics.The worse the pore structure,the greater the change of internal pore distribution caused by liquid sulfur deposition and adsorption,and the stronger the heterogeneity.Liquid sulfur deposition and adsorption change the pore size distribution,pore connectivity,and heterogeneity of the rock,which further changes the physical properties of the reservoir.After sulfur injection and gas flooding,the permeability of TypeⅠreservoirs with good physical properties decreased by 16%,and that of TypesⅡandⅢreservoirs with poor physical properties decreased by 90%or more,suggesting an extremely high damage.This indicates that the worse the initial physical properties,the greater the damage of liquid sulfur deposition and adsorption.Liquid sulfur is adsorbed and deposited in different types of pore space in the forms of flocculence,cobweb,or retinitis,causing different changes in the pore structure and physical property of the reservoir. 展开更多
关键词 high-H2S gas reservoir liquid sulfur adsorption and deposition pore structure physical property reservoir characterization
下载PDF
Reservoir Quality Controlling Factor of the Asmari Reservoir in an Oil Field in Dezful Embayment, SW Iran
11
作者 Katayoon Rezaeeparto Leila Fazli Somayeh Parham 《Open Journal of Geology》 CAS 2024年第2期259-278,共20页
The Asmari Formation Oligo-Miocene in age is one of the most important reservoir rocks in SW Iran and Zagros basin and composed of carbonate rocks and locally sandstones and evaporates. In this research, reservoir qua... The Asmari Formation Oligo-Miocene in age is one of the most important reservoir rocks in SW Iran and Zagros basin and composed of carbonate rocks and locally sandstones and evaporates. In this research, reservoir quality controlling factors have been investigated in a well in one of the oil fields in Dezful Embayment, SW Iran. Based on this research, depositional environment, diagenesis and fracturing have been affected on reservoir quality. 3 distinct depositional settings can be recognized in the studied interval including tidal flat, lagoon, and shoal. Among these depositional setting, shoal environment with ooid grainstone microfacies along with interparticle porosity shows good reservoir characteristics. Diagenetic processes also play an important role on reservoir quality;dolomitization and dissolution have positive effects on porosity and enhances reservoir quality, while cementation, anhydritization and compaction have negative effect on it. Fracturing is another important factor affected on the carbonate reservoirs especially in the Asmari Formation. 展开更多
关键词 Asmari Formation Dezful Embayment reservoir Quality DIAGENESIS Depositional Environment
下载PDF
Microplastics in sediment of the Three Gorges Reservoir:abundance and characteristics under different environmental conditions
12
作者 Wang LI Bo ZU +2 位作者 Yiwei LIU Juncheng GUO Jiawen LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期101-112,共12页
Freshwater microplastic pollution is an urgent issue of global concern,and research on the distribution in reservoirs is lacking.We investigated the microplastic pollution levels in wet sediments collected from the Th... Freshwater microplastic pollution is an urgent issue of global concern,and research on the distribution in reservoirs is lacking.We investigated the microplastic pollution levels in wet sediments collected from the Three Gorges Reservoir,the largest reservoir of China.Results show that microplastics were ubiquitous in the sediments of the Three Gorges Reservoir,and their abundance ranged from 59 to 276 pp/kg(plastic particles per kg,dry weight).Economic development and total population were important factors affecting the spatial heterogeneity of microplastic abundance,and the contribution of large cities along the reservoir to microplastic pollution should be paid with more attention.Fibrous microplastics were the most abundant type of microplastic particles in reservoir sediments,whereas polystyrene,polypropylene,and polyamide were the main types of polymers.The apparent spatial heterogeneity in morphology and color of microplastics is attributed to different anthropogenic or landbased pollution sources.Moreover,the accumulation of microplastics near the inlet of tributaries reflects the role of potential contributors of tributaries.More importantly,multiple bisphenols(BPs)and heavy metals detected at the microplastic surfaces indicate that microplastics can act as carriers of these pollutants in the environment in the same way as sediments did,which may alter the environmental fate and toxicity of these pollutants.Therefore,we conclude that the Three Gorges Reservoir had been contaminated with microplastics,which posed a stress risk for organisms who ingest them along with their associated pollutants(BPs,heavy metals). 展开更多
关键词 microplastics Three Gorges reservoir SEDIMENT BISPHENOL heavy metal
下载PDF
Diagenetic evolution and reservoir quality of the Oligocene sandstones in the Baiyun Sag, Pearl River Mouth Basin, South China Sea
13
作者 Bing Tian Shanshan Zuo +3 位作者 Youwei Zheng Jie Zhang Jiayu Du Jun Tang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期67-82,共16页
The Oligocene Zhuhai sandstones are significant reservoirs for hydrocarbons in the Baiyun Sag, South China Sea.For effective appraisal, exploration and exploitation of such a deep-water hydrocarbon sandstone, samples ... The Oligocene Zhuhai sandstones are significant reservoirs for hydrocarbons in the Baiyun Sag, South China Sea.For effective appraisal, exploration and exploitation of such a deep-water hydrocarbon sandstone, samples of five wells from depths of 850 m to 3 000 m were studied. A series of comprehensive petrographic and geochemical analyses were performed to unravel the diagenetic features and their impact on the reservoir quality.Petrographically, the sandstones are dominated by feldspathic litharenites and lithic arenites with fine to medium grain sizes and moderate to good sorting. The reservoir quality varies greatly with a range of porosity from 0.2% to 36.1% and permeability from 0.016 ×10~(–3) μm~2 to 4 301 ×10~(–3) μm~2, which is attributed to complex diagenetic evolution related to sedimentary facies;these include compaction, cementation of calcite, dolomite, siderite and framboidal pyrite in eogenetic stage;further compaction, feldspar dissolution, precipitation of ferrocalcite and ankerite, quartz cements, formation of kaolinite and its illitization, precipitation of albite and nodular pyrite, as well as hydrocarbon charge in mesogenetic stage. The dissolution of feldspar and illitization of kaolinite provide internal sources for the precipitation of quartz cement, while carbonate cements are derived from external sources related to interbedded mudstones and deep fluid. Compaction is the predominant factor in reducing the total porosity, followed by carbonate cementation that leads to strong heterogeneity. Feldspar dissolution and concomitant quartz and clay cementation barely changes the porosity but significantly reduces the permeability.The high-quality reservoirs can be concluded as medium-grained sandstones lying in the central parts of thick underwater distributary channel sandbodies(>2 m) with a high content of detrital quartz but low cement. 展开更多
关键词 Baiyun Sag OLIGOCENE Zhuhai Formation DIAGENESIS reservoir quality
下载PDF
An approximate analytical model for unconventional reservoir considering variable matrix blocks and simultaneous matrix depletion
14
作者 Kai-Xuan Qiu Jia Li +2 位作者 Dong Feng Shi-Ming Wei Gang Lei 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期352-365,共14页
In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate pro... In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate production evaluations because of the absence of matrix-macrofracture communication.In addition,most of the existing models are solved analytically based on Laplace transform and numerical inversion.Hence,an approximate analytical solution is derived directly in real-time space considering variable matrix blocks and simultaneous matrix depletion.To simplify the derivation,the simultaneous matrix depletion is divided into two parts:one part feeding the macrofractures and the other part feeding the microfractures.Then,a series of partial differential equations(PDEs)describing the transient flow and boundary conditions are constructed and solved analytically by integration.Finally,a relationship between oil rate and production time in real-time space is obtained.The new model is verified against classical analytical models.When the microfracture system and matrix-macrofracture communication is neglected,the result of the new model agrees with those obtained with the dual-porosity and triple-porosity model,respectively.Certainly,the new model also has an excellent agreement with the numerical model.The model is then applied to two actual tight oil wells completed in western Canada sedimentary basin.After identifying the flow regime,the solution suitably matches the field production data,and the model parameters are determined.Through these output parameters,we can accurately forecast the production and even estimate the petrophysical properties. 展开更多
关键词 Analytical solution Unconventional reservoir Variable matrix Simultaneous flow
下载PDF
Centrifuge modeling of unreinforced and multi-row stabilizing piles reinforced landslides subjected to reservoir water level fluctuation
15
作者 Chenyang Zhang Yueping Yin +3 位作者 Hui Yan Sainan Zhu Ming Zhang Luqi Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1600-1614,共15页
With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides... With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides in China.In this study,two centrifuge model tests were carried out to study the unreinforced and MRSP-reinforced slopes subjected to reservoir water level(RWL)operation,using the Taping landslide as a prototype.The results indicate that the RWL rising can provide lateral support within the submerged zone and then produce the inward seepage force,eventually strengthening the slope stability.However,a rapid RWL drawdown may induce outward seepage forces and a sudden debuttressing effect,consequently reducing the effective soil normal stress and triggering partial pre-failure within the RWL fluctuation zone.Furthermore,partial deformation and subsequent soil structure damage generate excess pore water pressures,ultimately leading to the overall failure of the reservoir landslide.This study also reveals that a rapid increase in the downslope driving force due to RWL drawdown significantly intensifies the lateral earth pressures exerted on the MRSPs.Conversely,the MRSPs possess a considerable reinforcement effect on the reservoir landslide,transforming the overall failure into a partial deformation and failure situated above and in front of the MRSPs.The mechanical transfer behavior observed in the MRSPs demonstrates a progressive alteration in relation to RWL fluctuations.As the RWL rises,the mechanical states among MRSPs exhibit a growing imbalance.The shear force transfer factor(i.e.the ratio of shear forces on pile of the n th row to that of the first row)increases significantly with the RWL drawdown.This indicates that the mechanical states among MRSPs tend toward an enhanced equilibrium.The insights gained from this study contribute to a more comprehensive understanding of the failure mechanisms of reservoir landslides and the mechanical behavior of MRSPs in reservoir banks. 展开更多
关键词 reservoir landslide Failure mechanism Multi-row stabilizing piles Mechanical behavior
下载PDF
Fractal model of spontaneous imbibition in low-permeability reservoirs coupled with heterogeneity of pore seepage channels and threshold pressure
16
作者 Ming-Sheng Zuo Hao Chen +3 位作者 Xi-Liang Liu Hai-Peng Liu Yi Wu Xin-Yu Qi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1002-1017,共16页
Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability res... Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability reservoirs is extremely challenging.Commonly,traditional SI models based on single or averaged capillary tortuosity ignore the influence of heterogeneity of pore seepage channels and the threshold pressure(TP)on imbibition.Therefore,in this work,based on capillary model and fractal theory,a mathematical model of characterizing SI considering heterogeneity of pore seepage channels is established.On this basis,the threshold pressure was introduced to determine the pore radius at which the wetted phase can displace oil.The proposed new SI model was verified by imbibition experimental data.The study shows that for weakly heterogeneous cores with permeability of 0-1 m D,the traditional SI model can characterize the imbibition process relatively accurately,and the new imbibition model can increase the coefficient of determination by 1.05 times.However,traditional model has serious deviations in predicting the imbibition recovery for cores with permeability of 10-50 m D.The new SI model coupling with heterogeneity of pore seepage channels and threshold pressure effectively solves this problem,and the determination coefficient is increased from 0.344 to 0.922,which is increased by2.68 times.For low-permeability reservoirs,the production of the oil in transitional pores(0.01-0.1μm)and mesopores(0.1-1μm)significantly affects the imbibition recovery,as the research shows that when the heterogeneity of pore seepage channels is ignored,the oil recovery in transitional pores and mesopores decreases by 7.54%and 4.26%,respectively.Sensitivity analysis shows that increasing interfacial tension,decreasing contact angle,oil-water viscosity ratio and threshold pressure will increase imbibition recovery.In addition,there are critical values for the influence of these factors on the imbibition recovery,which provides theoretical support for surfactant optimization. 展开更多
关键词 Spontaneous imbibition Low-permeability reservoir Fractal model Threshold pressure Capillary tube
下载PDF
Petrophysical Evaluation of Cape Three Points Reservoirs
17
作者 Striggner Bedu-Addo Sylvester Kojo Danuor Larry Pax Chegbeleh 《International Journal of Geosciences》 CAS 2024年第2期162-179,共18页
The findings of a study to ascertain and assess the petrophysical characteristics of Cape Three Points reservoirs in the Western basin with a view to describe the reservoir quantitatively using Well Logs, Petrel and T... The findings of a study to ascertain and assess the petrophysical characteristics of Cape Three Points reservoirs in the Western basin with a view to describe the reservoir quantitatively using Well Logs, Petrel and Techlog. The investigated characteristics, which were all deduced from geophysical wire-line logs, include lithology, porosity, permeability, fluid saturation, and net to gross thickness. To characterise the reservoir on the field, a suite of wire-line logs including gamma ray, resistivity, spontaneous potential, and density logs for three wells (WELL_1X, WELL_2X, and WELL_3X) from the Tano Cape Three Point basin were studied. The analyses that were done included lithology delineation, reservoir identification, and petrophysical parameter determination for the identified reservoirs. The tops and bases of the three wells analysed were marked at a depth of 1203.06 - 2015.64 m, 3863.03 - 4253.85 m and 2497.38 - 2560.32 m respectively. There were no hydrocarbons in the reservoirs from the studies. The petrophysical parameters computed for each reservoir provided porosities of 13%, 3% and 11% respectively. The water saturation also determined for these three wells (WELL_1X, WELL_2X and WELL_3X) were 94%, 95% and 89% respectively. These results together with the behaviour of the density and neutron logs suggested that these wells are wildcat wells. 展开更多
关键词 Petrophysical Cape Three Points reservoirS
下载PDF
Growth, Population Parameters and Stock Status of Sarotherodon galilaeus in Samandeni Reservoir, Burkina Faso
18
作者 Nomwine Da Raymond Ouedraogo +1 位作者 Mahamoudou Minoungou Adama Oueda 《Open Journal of Ecology》 2024年第4期257-273,共17页
Mango tilapia, Sarotherodon galilaeus is one of the most caught fish species in the Samandeni multi-species fishing sites of which, few data on its biology and exploitation are available. The study aimed to Assess the... Mango tilapia, Sarotherodon galilaeus is one of the most caught fish species in the Samandeni multi-species fishing sites of which, few data on its biology and exploitation are available. The study aimed to Assess the stock status of S. galilaeus. Sampling was conducted from March, 2021 to February 2022 based on commercial fish catches to analyze growth parameters, first sexual maturity size and harvest status of the stock. A total of 572 specimens including 297 females and 275 males were examined. The stock assessment was performed by using the Length based Bayesian method of Biomass (LBB) and that of growth by the ELEFAN method. The growth parameters showed a seasonality of growth and females appeared to grow faster than males. On the other hand, males had a greater asymptotic length than females. Results on the estimated length of fish at first maturity showed that females firstly reached the maturity compared to males. The relative biomass (B/B<sub>0</sub>) estimated for the stock was higher than the relative biomass that produces maximum sustainable yield (B<sub>MSY</sub>/B<sub>0</sub>) indicating healthy biomass. In addition, the length at first sexual maturity was less than the length at the first catch, indicating the absence of overfishing of growth. In addition, extending the study to the various stocks of the reservoir would be important for the sustainable management of the Samandeni high economic fishing area. 展开更多
关键词 GROWTH Stock Status Sarotherodon galilaeus Samandeni reservoir MATURITY
下载PDF
Air pressure law of a reservoir constructed in karst sinkholes
19
作者 YU Bo TAI Shengping +4 位作者 ZHENG Kexun CHEN Shiwan HAN Xiao WANG Senlin ZUO Shuangying 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1048-1057,共10页
Karst sinkholes with natural negative landform provide favorable conditions for the pumped storage reservoir construction for less excavation work.However,the construction of the reservoir would plug the natural karst... Karst sinkholes with natural negative landform provide favorable conditions for the pumped storage reservoir construction for less excavation work.However,the construction of the reservoir would plug the natural karst channels for water and air,which would cause remarkable air pressure in karst channels when the groundwater level fluctuates.A large laboratory simulation test was carried out to study the air pressure variation of a reservoir built on the karst sinkhole.The air pressure in the karst channel and inside the model was monitored during the groundwater rising and falling process.Result showed that the variation of air pressure in the karst channel and the surrounding rock exhibited a high degree of similarity.The air pressure increased rapidly at the initial stage of water level rising,followed by a slight decrease,then the air pressure increased sharply when the water level approached the top of the karst cave.The initial peak of air pressure and the final peak of air pressure were defined,and both air pressure peaks were linearly increasing with the water level rising rate.The negative air pressure was also analyzed during the drainage process,which was linearly correlated with the water level falling rate.The causes of air pressure variation in karst channels of a pumped storage reservoir built on the karst sinkhole were discussed.The initial rapid increase,then slight decrease and final sudden increase of air pressure were controlled by the combined effects of air compression in karst channel and air seepage into the surrounding rock.For the drainage process,the instant negative air pressure and gradual recovering of air pressure were controlled by the combined effects of negative air pressure induced by water level falling and air supply from surrounding rock.This work could provide valuable reference for the reservoir construction in karst area. 展开更多
关键词 Simulation test Karst sinkhole Pumped storage reservoir Air pressure Flow rate
下载PDF
Dynamic interwell connectivity analysis of multi-layer waterflooding reservoirs based on an improved graph neural network
20
作者 Zhao-Qin Huang Zhao-Xu Wang +4 位作者 Hui-Fang Hu Shi-Ming Zhang Yong-Xing Liang Qi Guo Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1062-1080,共19页
The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oi... The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil. 展开更多
关键词 Graph neural network Dynamic interwell connectivity Production-injection splitting Attention mechanism Multi-layer reservoir
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部