期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Mechanical properties and failure characteristics of fractured sandstone with grouting and anchorage 被引量:9
1
作者 Zong Yijiang Han Lijun +1 位作者 Qu Tao Yang Shengqi 《International Journal of Mining Science and Technology》 SCIE EI 2014年第2期165-170,共6页
Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fract... Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fractured sandstone under different conditions of anchorage. The experimental results show that the strength and elastic modulus of fractured sandstone with different fracture angles are significantly lower than those of intact sandstone. Compared with the fractured samples without anchorage,the peak strength, residual strength, peak and ultimate axial strain of fractured sandstone under different anchorage increase by 64.5–320.0%, 62.8–493.0%, and 31.6–181.4%, respectively. The number of bolts and degree of pre-stress has certain effects on the peak strength and failure model of fractured sandstone. The peak strength of fractured sandstone under different anchorage increases to some extent, and the failure model of fractured sandstone also transforms from tensile failure to tensile–shear mixed failure with the number of bolts. The pre-stress can restrain the formation and evolution process of tensile cracks, delay the failure process of fractured sandstone under anchorage and impel the transformation of failure model from brittle failure to plastic failure. 展开更多
关键词 fractured rock mass Anchorage properties Peak strength Crack propagation Failure characteristics
下载PDF
Failure characteristics and fracture mechanism of overburden rock induced by mining:A case study in China
2
作者 Jiawei Li Meng Zhang +2 位作者 Changxiang Wang Changlong Liao Baoliang Zhang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期241-255,共15页
This study employs similar simulation testing and discrete element simulation coupling to analyze the failure and deformation processes of a model coal seam's roof.The caving area of the overburden rock is divided... This study employs similar simulation testing and discrete element simulation coupling to analyze the failure and deformation processes of a model coal seam's roof.The caving area of the overburden rock is divided into three zones:the delamination fracture zone,broken fracture zone,and compaction zone.The caving and fracture zones'heights are approximately 110 m above the coal seam,with a maximum subsidence of 11 m.The delamination fracture zone's porosity range is between 0.2 and 0.3,while the remainder of the roof predominantly exhibits a porosity of less than 0.1.In addition,the numerical model's stress analysis revealed that the overburden rock's displacement zone forms an'arch-beam'structure starting from 160 m,with the maximum and minimum stress values decreasing as the distance of advancement increases.In the stress beam interval of the overburden rock,the maximum value changes periodically as the advancement distance increases.Based on a comparative analysis between observable data from on-site work and numerical simulation results,the stress data from the numerical simulation are essentially consistent with the actual results detected on-site,indicating the validity of the numerical simulation results. 展开更多
关键词 Fracture development characteristics Similar simulation experiment Layer porosity Discrete element numerical simulation
下载PDF
Fracture characteristics of notched investment cast TiAl alloy through in situ SEM observation 被引量:5
3
作者 陈艳飞 郑顺奇 +4 位作者 涂江平 肖树龙 田竟 徐丽娟 陈玉勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2389-2394,共6页
TiAl alloys were produced by investment casting method combined with induction skull melting (ISM) technique. In situ scanning electron microscopy (SEM) was utilized to study the fracture characteristics and crack... TiAl alloys were produced by investment casting method combined with induction skull melting (ISM) technique. In situ scanning electron microscopy (SEM) was utilized to study the fracture characteristics and crack propagation of a notched investment cast TiAl specimens in tension under incremental loading conditions. The whole process of crack initiation, propagation and failure during tensile deformation was observed and characterized. The results show that the fracture mechanism was sensitive to not only the microcracks near the notched area but also lamellar orientation to loading axis. The high tensile stress leads to the new microcracks nucleate along lamellar interfaces of grains with favorable orientation when local stress intensity reaches the toughness threshold of the material. Thus, both plasticity and high tensile stress are required to cause notched TiAl failure. 展开更多
关键词 TiAl alloys investment cast fracture characteristics in situ SEM observation
下载PDF
Strength characteristics of modified polypropylene fiber and cement-reinforced loess 被引量:11
4
作者 YANG Bo-han 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期560-568,共9页
The reinforcement and stabilization of loess soil are duscussed by using fibers as the reinforcement and cement as the stabilization materials.To study the strength characteristics of loess soil reinforced by modified... The reinforcement and stabilization of loess soil are duscussed by using fibers as the reinforcement and cement as the stabilization materials.To study the strength characteristics of loess soil reinforced by modified polypropylene(MPP) fiber and cement,samples were prepared with six different fiber contents,three different cement contents,three different curing periods and three kinds of fiber length.The samples were tested under submergence and non-submergence conditions for the unconfined compressive strength(UCS),the splitting tensile strength and the compressive resilient modulus.The results indicated that combined reinforcement by PP fiber and cement could significantly improve the early strength of loess to 3.65–5.99 MPa in three days.With an increase in cement content,the specimens exhibited brittle fracture.However,the addition of fibers gradually modified the mode of fracture from brittle to ductile to plastic.The optimal dosage of fiber to reinforce loess was in the range of 0.3%–0.45% and the optimum fiber length was 12 mm,for which the unconfined compressive strength and tensile strength reached their maxima.Based on the analysis of failure properties,cement-reinforced loess specimens were susceptible to brittle damage under pressure,and the effect of modified polypropylene fiber as the connecting "bridge" could help the specimens achieve a satisfactory level of ductility when under pressure. 展开更多
关键词 fiber-reinforced soil cement-stabilized soil LOESS mechanical properties fracture characteristics
下载PDF
Implications for identification of principal stress directions from acoustic emission characteristics of granite under biaxial compression experiments 被引量:5
5
作者 Longjun Dong Yongchao Chen +2 位作者 Daoyuan Sun Yihan Zhang Sijia Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期852-863,共12页
The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side le... The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side length with different intermediate principal stress gradients in combination with acoustic emission(AE)technique.Results show that the fracture characteristics of granite samples change from‘sudden and aggregated’to‘continuous and dispersed’with the increase of the intermediate principal stress.The effect of increasing intermediate principal stress on AE amplitude is not significant,but it increases the proportions of high-frequency AE signals and shear cracks,which in turn increases the possibility of unstable rock failure.The difference of stress in different directions causes the anisotropy of rock fracture and thus leads to the obvious anisotropic characteristics of wave velocity variations.The anisotropy of wave velocity variations with stress difference is probable to identify the principal stress directions.The AE characteristics and the anisotropy of wave velocity variations of granite under two-dimensional stress are not only beneficial complements for rock fracture characteristic and principal stress direction identification,but also can provide a new analysis method for stability monitoring in practical rock engineering. 展开更多
关键词 Two-dimensional stress Fracture characteristics Acoustic emission(AE) Wave velocity Principal stress direction
下载PDF
Fracture characteristics and ductility of cracked concrete beam post-strengthened with CFRP Sheet 被引量:1
6
作者 易富民 董伟 +1 位作者 赵艳华 吴智敏 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期5-10,共6页
The present paper concerns the fracture characteristics and ductility of cracked concrete beam externally bonded with carbon fiber-reinforced polymer (CFRP) sheet as well as the integration behaviors between CFRP/conc... The present paper concerns the fracture characteristics and ductility of cracked concrete beam externally bonded with carbon fiber-reinforced polymer (CFRP) sheet as well as the integration behaviors between CFRP/concrete interfacial debonding and concrete cracking.Three-point bending tests were carried out on the CFRP-strengthened cracked concrete beams with varying specimen depth and initial crack length.A straingauge method was developed to monitor the crack initiation and propagation in concrete,and the CFRP/concrete interfacial bonding behaviors,respectively.Clip gauges were used to measure crack mouth opening displacement (CMOD) and the deflection at midspan.Experimental results revealed that CFRP-strengthened specimen shows a higher load capacity under the same deformation level and a better inelastic deformation capacity compared with the unstrengthened one.For there are two manifest peak values in the obtained load versus displacement curve,the ductility of CFRP-strengthened concrete beams were investigated using index expressed as area ratio on the load versus displacement curve.The calculated results indicated that the contribution from CFRP sheet to the ductility improvement of specimen is notable when the deflection at midspan exceeded 10.5 times the first-crack deflection. 展开更多
关键词 FRP composites cracked concrete beam fracture characteristics DUCTILITY
下载PDF
Numerical analysis of seepage flow characteristic of collapse column under the influence of mining 被引量:9
7
作者 Ou Subei Wang Lianguo +3 位作者 Wang Peipei Wang Zhansheng Huang Jihui Zhou Donglei 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期243-250,共8页
Based on the importance of fractured rock mass seepage research, in order to analyze seepage flow characteristics of collapse column under the influence of mining, a method by embedding fractured rock mass flow solid ... Based on the importance of fractured rock mass seepage research, in order to analyze seepage flow characteristics of collapse column under the influence of mining, a method by embedding fractured rock mass flow solid coupling relationship into FLAC3D internal flow models is presented according to fluid-solid coupling theory and strength criterion. A calculation model of numerical analysis was established, and the influences of mining pressure and plastic damage to pore water pressure and seepage vector change rule were studied. The results show that collapse column is the main channel of confined water seepage upward. The impact is not big when the workface is away from the collapse column. But when the workface is nearing a collapse column, there will be a seepage channel on a side near the workface, in which seepage vector and head are comparatively large. With workface pushing through collapse column, the seepage channel transfers to the other side of the column. In addition, when the plastic damage area within the collapse column breaks through, a "pipeline flow" will be formed within the column, and seepage field will change remarkably and the possibility of water bursting will be greater. 展开更多
关键词 Collapse column fractured rock mass Fluid-solid coupling Seepage characteristic Seepage channel
下载PDF
THE FRACTURE CHARACTERISTICS OF δ-Al_2O_3/AlALLOY COMPOSITES
8
作者 G.Z. Kang Q. Gao C. Yang and J.X. Zhang (Department of Applied Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China ) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第6期0-0,0-0+0-0+0,共7页
The initial location of the crack and the controlling factor of the fracture in the squeeze casting composites δ-Al2 O3/Al-5.5Zn, δ-Al2 O3/Al-5.5Mg and δ-Al2 O3/Al-cSi were studied by microscopic observation and fi... The initial location of the crack and the controlling factor of the fracture in the squeeze casting composites δ-Al2 O3/Al-5.5Zn, δ-Al2 O3/Al-5.5Mg and δ-Al2 O3/Al-cSi were studied by microscopic observation and finite element analysis(FEA). The in situ failure processes were obseroed bU the scanning electronic microscope mp. The distributions of stress components along the fiber length in matta, and the tnean axial stresses of fiber and matrix were calculated by three-dimensional elasto-plastic FEA.It is found that the failure modes of short fiber reiwtreed metal matrix composites change with the variations of the micro-structurnl characteristics of composites, such as fiber orientation, matrix strength and intedecial bonding, etc. 展开更多
关键词 metal matrix composite short fiber fracture characteristics finite element analysis
下载PDF
Tensile properties and fracture characteristics of spray cast alloy IC6 (Ni-7.8Al-14Mo-0.05B)
9
作者 MI Guo-fa WANG Hong-wei +2 位作者 TIAN Shi-fan LI Zhou ZENG Song-yan 《China Foundry》 SCIE CAS 2007年第1期10-12,共3页
Tensile testing results of spray cast Ni3Al-based superalloy indicated that the yield strength and tensile strength increase with the increasing of temperature and reached maximum at around 760℃, then decrease with t... Tensile testing results of spray cast Ni3Al-based superalloy indicated that the yield strength and tensile strength increase with the increasing of temperature and reached maximum at around 760℃, then decrease with the increasing of temperature. After high temperature isostatic pressing (HIP), yield strength decreased and ductility and tensile strength increased. Stereographic projection showed that no matter at room temperature, medium temperature or high temperature, cracks extend along (111). 展开更多
关键词 spray casting Ni3Al-based superalloy tensile properties fracture characteristics
下载PDF
Bonding and Fracture Characteristics at α_2/γ Interface in TiAl Alloy with B Addition
10
作者 Senying LIU Dongliang ZHAO Rongze HU and Chongyu WANG(Central Iron and Steel Research Institute, Beijing 100081, China)Ping LUO(National Research Center for CRM, Beijing 100013, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第1期43-47,共5页
The bonding characteristics of (0001)α2||(111)γ interface in two-phase TiAl alloy have beeninvestigated with the recursion method. The results of bond order integral and interaction energybetween atoms are presented... The bonding characteristics of (0001)α2||(111)γ interface in two-phase TiAl alloy have beeninvestigated with the recursion method. The results of bond order integral and interaction energybetween atoms are presented. The effects of B on atoms bonding both in constituent phase andat the α2/γ interface have been studied. The correlation between the mechanical propertiesof the alloy and the bonding at the interface has been discussed. The results suggest that Bsegregation to the interface benefits the ductility. This is supported by the related experiment. 展开更多
关键词 TIAL Bonding and Fracture characteristics at Interface in TiAl Alloy with B Addition
下载PDF
Studies on Characteristics of Fracture Lithofaciesin Wenxipo W-Cs-Rb Polymetallic Deposit,Hainan Province,China
11
作者 HAO Guibao FANG Weixuan +1 位作者 GUO Yuqian CAO Jingwei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期212-213,共2页
1 Introduction Wenxipo W-Cs-Rb polymetallic depositis located in Fengshou rubidium-cesium polymetallic prospecting area in Danzhou City,Hainan Province,China.The hornstone facies,a thermal metamorphic facies,
关键词 Cs Studies on characteristics of Fracture Lithofaciesin Wenxipo W-Cs-Rb Polymetallic Deposit Hainan Province China RB
下载PDF
Analysis of explosion wave interactions and rock breaking effects during dual initiation
12
作者 Renshu Yang Jinjing Zuo +3 位作者 Liwei Ma Yong Zhao Zhen Liu Quanmin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1788-1798,共11页
In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave fie... In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave field and rock breaking effect in terms of shockwave collision, stress change of the blast hole wall in the collision zone, and crack propagation in the collision zone. The produced shockwave on the collision surface has an intensity surpassing the sum of the intensities of the two colliding explosion shock waves. At the collisionlocation, the kinetic energy is transformed into potential energy with a reduction in particle velocity at the wave front and the wavefront pressure increases. The expansion form of the superposed shock wave is dumbbell-shaped, the shock wave velocity in the collisionarea is greater than the radial shock wave velocity, and the average propagation angle of the explosion shock waves is approximately 60°.Accordingly, a fitted relationship between blast hole wall stress and explosion wave propagation angle in the superposition area is plotted.Under the experimental conditions, the superimposed explosion wave stress of the blast hole wall is approximately 1.73 times the singleexplosionwave incident stress. The results of the model test and numerical simulations reveal that large-scale radial fracture cracks weregenerated on the blast hole wall in the superimposed area, and the width of the crack increased. The width of the large-scale radial fracturecracks formed by a strong impact is approximately 5% of the blast hole length. According to the characteristics of blast hole wallcompression, the mean peak pressures of the strongly superimposed area are approximately 1.48 and 1.84 times those of the weakly superimposedand nonsuperimposed areas, respectively. 展开更多
关键词 BLASTING shock wave collision high-speed schlieren system crack fracture characteristic explosion wave
下载PDF
Fracture network types revealed by well test curves for shale reservoirs in the Sichuan Basin,China
13
作者 Yanyan Wang Hua Liu +2 位作者 Xiaohu Hu Cheng Dai Sidong Fang 《Energy Geoscience》 EI 2024年第1期264-274,共11页
Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productiv... Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productivity and formulating proper development strategies.This study establishes a new well test interpretation model for fractured horizontal wells based on seepage mechanisms of shale reservoirs and proposes a method for identifying fracturing patterns based on the characteristic slopes of pressure buildup curves and curve combination patterns.The pressure buildup curve patterns are identified to represent three types of shale reservoirs in the Sichuan Basin,namely the moderately deep shale reservoirs with high pressure,deep shale reservoirs with ultra-high pressure,and moderately deep shale reservoirs with normal pressure.Based on this,the relationship between the typical pressure buildup curve patterns and the fracture network types are put forward.Fracturing effects of three types of shale gas reservoir are compared and analyzed.The results show that typical flow patterns of shale reservoirs include bilinear flow in primary and secondary fractures,linear flow in secondary fractures,bilinear flow in secondary fractures and matrix,and linear flow in matrix.The fracture network characteristics can be determined using the characteristic slopes of pressure buildup curves and curve combinations.The linear flow in early secondary fractures is increasingly distinct with an increase in primary fracture conductivity.Moreover,the bilinear flow in secondary fractures and matrix and the subsequent linear flow in the matrix occur as the propping and density of secondary fractures increase.The increase in the burial depth,in-situ stress,and stress difference corresponds to a decrease in the propping of primary fractures that expand along different directions in the shale gas wells in the Sichuan Basin.Four pressure buildup curve patterns exist in the Sichuan Basin and its periphery.The pattern of pressure buildup curves of shale reservoirs in the Yongchuan area can be described as 1/2/→1/4,indicating limited stimulated reservoir volume,poorly propped secondary fractures,and the forming of primary fractures that extend only to certain directions.The pressure buildup curves of shale reservoirs in the main block of the Fuling area show a pattern of 1/4/→1/2 or 1/2,indicating greater stimulated reservoir volume,well propped secondary fractures,and the forming of complex fracture networks.The pattern of pressure buildup curves of shale reservoirs in the Pingqiao area is 1/2/→1/4→/1/2,indicating a fracturing effect somewhere between that of the Fuling and Yongchuan areas.For reservoirs with normal pressure,it is difficult to determine fracture network characteristics from pressure buildup curves due to insufficient formation energy and limited liquid drainage. 展开更多
关键词 Shale gas fractured horizontal well Well testing interpretation Flow pattern characterization Parameter inversion Fracture network characteristics Sichuan basin
下载PDF
Development Phases and Mechanisms of Tectonic Fractures in the Longmaxi Formation Shale of the Dingshan Area in Southeast Sichuan Basin, China 被引量:7
14
作者 FAN Cunhui HE Shun +2 位作者 ZHANG Yu QIN Qirong ZHONG Cheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第6期2351-2366,共16页
Shale gas has currently attracted much attention during oil and gas exploration and development. Fractures in shale have an important influence on the enrichment and preservation of shale gas. This work studied the de... Shale gas has currently attracted much attention during oil and gas exploration and development. Fractures in shale have an important influence on the enrichment and preservation of shale gas. This work studied the developmental period and formation mechanism of tectonic fractures in the Longmaxi Formation shale in the Dingshan area of southeastern Sichuan Basin based on extensive observations of outcrops and cores, rock acoustic emission(Kaiser) experiments, homogenization temperature of fracture fill inclusions, apatite fission track, thermal burial history. The research shows that the fracture types of the Longmaxi Formation include tectonic fractures, diagenetic fractures and horizontal slip fractures. The main types are tectonic high-angle shear and horizontal slip fractures, with small openings, large spacing, low densities, and high degrees of filling. Six dominant directions of the fractures after correction by plane included NWW, nearly SN, NNW, NEE, nearly EW and NW. The analysis of field fracture stage and fracture system of the borehole suggests that the fractures in the Longmaxi Formation could be paired with two sets of plane X-shaped conjugate shear fractures, i.e., profile X-shaped conjugate shear fractures and extension fractures. The combination of qualitative geological analysis and quantitative experimental testing techniques indicates that the tectonic fractures in the Longmaxi Formation have undergone three periods of tectonic movement, namely mid-late Yanshanian movement(82–71.1 Ma), late Yanshanian and middle Himalaya movements(71.1–22.3 Ma), and the late Himalayan movement(22.3–0 Ma). The middle-late period of the Yanshanian movement and end of the Yanshanian movement-middle period of the Himalayan movement were the main fractureforming periods. The fractures were mostly filled with minerals, such as calcite and siliceous. The homogenization temperature of fracture fill inclusions was high, and the paleo-stress value was large; the tectonic movement from the late to present period was mainly a slight transformation and superposition of existing fractures and tectonic systems. Based on the principle of tectonic analysis and theory of geomechanics, we clarified the mechanism of the fractures in the Longmaxi Formation, and established the genetic model of the Longmaxi Formation. The research on the qualitative and quantitative techniques of the fracture-phase study could be effectively used to analyze the causes of the marine shale gas fractures in the Sichuan Basin. The research findings and results provide important references and technical support for further exploration and development of marine shale gas in South China. 展开更多
关键词 SHALE fracture characteristics formation phases Longmaxi Formation Dingshan area Sichuan Basin
下载PDF
Microstructure and properties of an Al-Zn-Mg-Cu alloy pre-stretched plate under various ageing conditions 被引量:5
15
作者 DONG Xiaorui LI Zhihui 《Rare Metals》 SCIE EI CAS CSCD 2008年第6期652-656,共5页
The microstructures after various ageing treatments and their relation to the strength, fracture toughness, and corrosion behavior of an Al-Zn-Mg-Cu alloy pre-stretched plate were investigated. The results show that r... The microstructures after various ageing treatments and their relation to the strength, fracture toughness, and corrosion behavior of an Al-Zn-Mg-Cu alloy pre-stretched plate were investigated. The results show that retrogression and reaging (RRA) treatment led to a combination of high strength and stress corrosion cracking (SCC) resistance of the alloy. The TEM microstructure of the RRA-treated alloy is a distribution of very fine precipitates in the aluminum matrix grains, similar to that obtained under T6 condition, and the distribution of coarse η MgZn2 precipitates on the grain boundaries similar to that obtained by T7 temper. SEM observations revealed that most of the intergranular fracture characteristics were present on the fracture surface of both the T6 and RRA-treated specimens. On the contrary, the fractographs of the T7 treated specimens mainly consisted of dimple-type ductile transgranular fracture with minor intergranular cracking. 展开更多
关键词 Al-Zn-Mg-Cu alloy microstructure tensile strength stress corrosion cracking fracture characteristics
下载PDF
Elastic and plastic deformation behavior analysis in small punch test for mechanical properties evaluation 被引量:4
16
作者 YANG Si-sheng LING Xiang DU Peng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第4期747-753,共7页
In order to estimate deformation and mechanical properties of material accurately,elastic and plastic deformation behavior of small punch test was discussed in this paper.A two-dimensional finite element model was est... In order to estimate deformation and mechanical properties of material accurately,elastic and plastic deformation behavior of small punch test was discussed in this paper.A two-dimensional finite element model was established based upon the Gurson-Tvergaard-Needleman(GTN)equation.According to the integration of load–displacement curves with different displacements,the evolution of elastic energy was obtained.The results show that the elastic energy increases quickly in the initial region and tends to be an approximate constant during the plastic bending phase.Meanwhile,an obvious change of the slope of load–displacement curve can be found in the elastic-plastic transition region.The macroscopic deformation and fracture feature were also discussed in order to verify the deformation analysis.Finally,the yield strength,tensile strength and elongation of AISI304 were obtained based on the analysis of deformation energy and percent fracture deflection.The results have a good agreement with that of conventional tensile tests,which may provide a theoretical basis of small punch analysis. 展开更多
关键词 small punch test mechanical properties elastic energy fracture characteristic
下载PDF
Macroscopic and microscopic fracture features of concrete used in coal mine under chlorine salt erosion 被引量:6
17
作者 Li Bing Yin Huiguang +4 位作者 Mao Xianbiao Li Yan Zhang Lianying Liu Ruixue Qiu Peitao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第3期455-459,共5页
The microscopic morphology and pore structure characteristics of concrete with composite admixtures(fly ash and mineral powder) after chlorine salt erosion were analyzed via scanning electron microscopy(SEM) and mercu... The microscopic morphology and pore structure characteristics of concrete with composite admixtures(fly ash and mineral powder) after chlorine salt erosion were analyzed via scanning electron microscopy(SEM) and mercury injection porosimetry(MIP), providing the basis for the design and maintenance of concrete shafts in coal mines. The above-mentioned characteristics were compared with the macroscopic characteristic of concrete fractures under uniaxial compression. The results show that the macroscopic fracture characteristics of concrete under uniaxial compression change from longitudinal split fracture and oblique section shear fracture to conjugate cant fracture, and the degree of breakage increases.Interface cracks, cement paste cracks, spherical surface cracks, and aggregate cracks appear in concrete under uniaxial compression. In the early stages of corrosion, the original cracks which are obvious are repaired. When the corrosion becomes more serious, cement paste cracks appear, and the number of harmful holes increases while the number of harmless holes decreases. This study also reveals the relationship between the macroscopic properties and microscopic structure of concrete under chloride salt erosion. Finally, the paper preliminarily discussed the relationship between the macroscopic properties and mesoscopic characteristics of concrete under chlorine salt erosion. 展开更多
关键词 Concrete Chlorine salt erosion Mesoscopic characteristic Damage fracture
下载PDF
Fracture development and hydrocarbon accumulation in tight sandstone reservoirs of the Paleogene Huagang Formation in the central reversal tectonic belt of the Xihu Sag, East China Sea 被引量:2
18
作者 ZHOU Xinhuai XU Guosheng +1 位作者 CUI Hengyuan ZHANG Wu 《Petroleum Exploration and Development》 2020年第3期499-512,共14页
By using thin section identification, cathodoluminescence, major and trace elements and fluid inclusion tests and authigenic illite dating, based on observation of core cracks, combined with the microscopic characteri... By using thin section identification, cathodoluminescence, major and trace elements and fluid inclusion tests and authigenic illite dating, based on observation of core cracks, combined with the microscopic characteristics and imaging logging characteristics of fractures, the stages of the fractures in the Huagang Formation of the central reversal tectonic belt of the Xihu Sag in the East China Sea, and the matching relationship between the fracture development stages and the oil and gas charging stages are clarified. There are diagenetic fractures and tectonic fractures in the reservoirs of the Huagang Formation in the study area. The diagenetic fractures developed during the diagenetic stage of the reservoirs and have less effect on oil and gas migration and transport. The tectonic fractures are divided into three stages based on tectonic movements controlling the fractures and their relationships with hydrocarbon charging: The first stage of fractures was generated in the early stage of the Himalayan Movement–Longjing Movement(12–13 Ma ago), when the tectonic stress caused the sutures and shale strips to twist, deform, and break. Tectonic microfractures generated in this period had short extension, narrow width, and poor effectiveness, and had little effect on oil and gas migration and transport. The second stage of fractures came up during the middle-late period of Himalayan Movement–Longjing Movement(9–12 Ma ago), when tectonic movements caused the development of tectonic fractures in the central reversal tectonic belt, these fractures are of large scale, long extension, and good effectiveness, and matched with the first stage of large scale oil and gas charging(9–12 Ma ago), so they play an important role in oil and gas migration, transportation, and accumulation. The third stage of fractures were created from Himalayan Movement–Okinawa Trough movement to the present day(0–3 Ma ago), the fractures are tectonic ones developing successively;matching with the second stage(0–3 Ma ago) of large-scale oil and gas charging, they created conditions for continuous natural gas migration and transportation. All these prove that the development of reservoir fractures in the Huagang Formation of Xihu Sag can provide seepage space and continuous and effective channels for efficient migration and accumulation of oil and gas. 展开更多
关键词 authigenic illite fluid inclusion analysis fracture characteristics oil and gas charging Paleogene Huagang Formation Xihu Sag
下载PDF
Study on adhesively-bonded surface of tapered double cantilever specimen made of aluminum foam affected with shear force
19
作者 孙洪鹏 CHO Jae-ung 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4521-4527,共7页
Aluminum foam is widely used in diverse areas to minimize the weight and maximize the absorption of shock energy in lightweight structures and various bio-materials.It presents a number of advantages,such as low densi... Aluminum foam is widely used in diverse areas to minimize the weight and maximize the absorption of shock energy in lightweight structures and various bio-materials.It presents a number of advantages,such as low density,incombustibility,non-rigidity,excellent energy absorptivity,sound absorptivity and low heat conductivity.The aluminum foam with an air cell structure was placed under the TDCB Mode II tensile load by using Landmark equipment manufactured by MTS to examine the shear failure behavior.The angle of the tapered adhesively-bonded surfaces of specimens was designated as a variable,and three models were developed with the inclined angles differing from one another at 6°,8° and 10°.The specimens with the inclined angles of 6°,8° and 10° have the maximum reaction forces of 168 N,194 N when the forced displacements are 6,5 and 4.2 mm respectively.There are three specimens with the inclined angles of 10°,8° and 6° in the order of maximum reaction force.As the analysis result,the maximum equivalent stresses of 0.813 MPa and 0.895 MPa happened when the forced displacements of 6 mm and 5 mm proceeded at the models of 6° and 8°,respectively.A simulation was carried out on the basis of finite element method and the experimental design.The results of the experiment and the simulation analysis are shown not different from each other significantly.Thus,only a simulation could be confirmed to be performed in substitution of an experiment,which is costly and time-consuming in order to determine the shearing properties of materials made of aluminum foam with artificial data. 展开更多
关键词 ADHESIVE DISPLACEMENT force reaction shearing fracture characteristic tapered double cantilever beam(TDCB)
下载PDF
Effect of hydraulic fracturing induced stress field on weak surface activation during unconventional reservoir development
20
作者 Jie Bai Xiao-Qiong Wang +2 位作者 Hong-Kui Ge Hu Meng Ye-Qun Wen 《Petroleum Science》 SCIE EI CSCD 2023年第5期3119-3130,共12页
Unconventional reservoirs usually contain many weak surfaces such as faults,laminae and natural fractures,and effective activation and utilization of these weak surfaces in reservoirs can significantly improve the ext... Unconventional reservoirs usually contain many weak surfaces such as faults,laminae and natural fractures,and effective activation and utilization of these weak surfaces in reservoirs can significantly improve the extraction effect.In hydraulic fracturing,when the artificial fracture approaches the natural fracture,the natural fracture would be influenced by both the original in-situ stress field and the hydraulic fracturing-induced stress field.In this paper,the hydraulic fracturing-induced stress field is calculated based on the relative position of hydraulic fracture and natural fracture,the original in-situ stress,the net pressure inside the hydraulic fracture and the pore pressure of the formation.Furthermore,the stability model of the natural fracture is established by combining the Mohr-Coulomb rupture criterion,and extensive parametric studies are conducted to explore the impact of each parameter on the stability of the natural fracture.The validity of the proposed model is verified by comparing with the reservoir characteristics and fracturing process of the X-well 150e155 formation in the Songliao Basin.It is found that the stress field induced by the hydraulic fracture inhibits the activation of the natural fracture after the artificial fracture crossed the natural fracture.Therefore,for similar reservoirs as X-well 150e155,it is suggested to connect natural fractures with hydraulic fractures first and then activate natural fractures which can effectively utilize the natural fractures and form a complex fracture network. 展开更多
关键词 Hydraulic fracturing Induced stress field Weak surface Natural fracture stability Fracturing characteristics
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部